

Document Reference: -	NPS/001/006	Document Type: -	Code of Practice			
Version: - 4.0	Date of Issue: -	June 2024	Page	1	of	67

NPS/001/006 – Technical Specification for Insulators for Overhead Lines up to and including 132kV

1. Purpose

The purpose of this document is to specify the technical requirements for insulators and insulator assemblies to be installed on overhead lines located in the Northern Powergrid distribution network operating up to and including 132KV.

This document supersedes the following documents, all copies of which should be destroyed:

Document Reference	Document Title	Version	Published Date
NPS/001/006	Technical Specification for Insulators for Overhead	3.0	February 2019
NP3/001/006	Lines up to and including 132kV	5.0	February 2019

2. Scope

This document applies to insulators and insulator assemblies containing porcelain, glass or composite insulators for use on overhead lines located on the Northern Powergrid distribution network.

For details about the application of insulators onto the Northern Powergrid distribution system see NSP/004/127 "Guidance on the selection and application of insulators" and NSP/004/104 "Guidance on the Types and Installation Requirements for Stays".

The range of insulators specified within this document includes LV and service insulators rated at 650V and HV and EHV insulators rated up to and including 132kV. All Insulators shall generally be in accordance with ENA TS 43-93.

Insulators supplied for EHV applications will be supplied as complete assemblies including all insulator protection devices.

Document Reference: -	NPS/001/006	Document Type: -	Code of Practice			
Version: - 4.0	Date of Issue: -	June 2024	Page	2	of	67

2.1 Contents

2. Scope 1 2.1 Contents 2 3. Technical Requirements 4 4.1 General 4 4.2 Variances and Clarifications to ENATS 43-93 4 3.1.1 Marking 4 3.1.2 Composite Insulator to ENATS 43-93 4 3.1.3 Composite Insulator – End Fittings 4 3.1.3 Composite Insulator – Tolerances 5 3.1.3 Composite Insulator – Tolerances 6 3.1.4 Composite Insulator – Tolerances 6 3.1.4 I General 6 3.1.4 J 1-20KV Pin Insulators 6 3.1.4 S 31K-V Tension Insulators 6 3.1.4 S 34KV Pin Insulators 6 3.1.4 S 34KV Tension Insulators 7 3.1.4 S 34KV Tension Insulators 7 3.1.4 S 34KV String Insulators 7 3.1.5 Post Insulator Clamp Tops 7 3.1.7 Composite String	1.	Pu	pose	1
3. Technical Requirements. 4 4.1 General 4 4.2 Variances and Clarifications to ENATS 43-93. 4 3.1.1 Marking. 4 3.1.1 Marking. 4 3.1.2 Composite Insulation Materials. 4 3.1.3 Composite Insulator – End Fittings. 4 3.1.3 Composite Insulator – Housing and sheds. 5 3.1.3.2 Composite Insulator – Tolerances. 6 3.1.4 High Voltage Insulators. 6 3.1.4 High Voltage Insulators. 6 3.1.4.1 General 6 3.1.4.1 General 6 3.1.4.2 11-20kV Pin Insulators 6 3.1.4.3 11-20kV Vin Insulators 6 3.1.4.4 33kV Pin Insulators 6 3.1.4.5 33kV Pin Insulators 6 3.1.4.6 33kV V Post Insulators 7 3.1.6 33-12kV String Insulators 7 3.1.6 31-2kV String Insulators 7 3.1.7 Composite String Insulators 7 3.1.8	2.	Sco	pe	1
4.1 General 4 4.2 Variances and Clarifications to ENATS 43-93 4 3.1.1 Marking 4 3.1.2 Composite Insulation Materials 4 3.1.3 Composite Insulator – End Fittings 4 3.1.3 Composite Insulator – Housing and sheds 5 3.1.3.2 Composite Insulator – Tolerances 6 3.1.4 High Voltage Insulators 6 3.1.4.1 General 6 3.1.4.1 General 6 3.1.4.2 High Voltage Insulators 6 3.1.4.3 SkV Pin Insulators 6 3.1.4.3 SkV Pin Insulators 6 3.1.4.4 33kV Pin Insulators 6 3.1.4.5 3kV Varinsion Insulators 6 3.1.4.5 3kV Varing Insulators 6 3.1.4.6 33kV Pin Insulators 6 3.1.4.5 SkV Post Insulators 6 3.1.4.6 33kV Varing Insulators 7 3.1.6 33-132kV String Insulators 7 3.1.7 Composite String Insulators 8 <		2.1	Contents	. 2
4.1 General 4 4.2 Variances and Clarifications to ENATS 43-93 4 3.1.1 Marking 4 3.1.2 Composite Insulation Materials 4 3.1.3 Composite Insulator – End Fittings 4 3.1.3 Composite Insulator – Housing and sheds 5 3.1.3.2 Composite Insulator – Tolerances 6 3.1.4 High Voltage Insulators 6 3.1.4.1 General 6 3.1.4.1 General 6 3.1.4.2 High Voltage Insulators 6 3.1.4.3 SkV Pin Insulators 6 3.1.4.3 SkV Pin Insulators 6 3.1.4.4 33kV Pin Insulators 6 3.1.4.5 3kV Varinsion Insulators 6 3.1.4.5 3kV Varing Insulators 6 3.1.4.6 33kV Pin Insulators 6 3.1.4.5 SkV Post Insulators 6 3.1.4.6 33kV Varing Insulators 7 3.1.6 33-132kV String Insulators 7 3.1.7 Composite String Insulators 8 <	3.	Те	hnical Requirements	4
4.2 Variances and Clarifications to ENATS 43-93		4.1	General	4
3.1.2 Composite Insulation Materials 4 3.1.3 Composite Insulator – End Fittings 4 3.1.3 Composite Insulator – Housing and sheds 5 3.1.3.2 Composite Insulator – Tolerances 6 3.1.4 High Voltage Insulator – Tolerances 6 3.1.4.1 General 6 3.1.4.2 11-20kV Pin Insulators 6 3.1.4.3 11-20kV Tension Insulators 6 3.1.4.3 11-20kV Tension Insulators 6 3.1.4.3 11-20kV Tension Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.6 33kV Tension Insulators 6 3.1.4.6 33kV Tension Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.6 33kV Tension Insulators 7 3.1.6 33-132kV Post Insulators 7 3.1.6 33-132kV String Insulators 7 3.1.7 Composite String Insulators 7 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements 9		4.2	Variances and Clarifications to ENATS 43-93	4
3.1.3 Composite Insulator – End Fittings 4 3.1.3.1 Composite Insulator – Housing and sheds 5 3.1.3.2 Composite Insulator – Tolerances 6 3.1.4 High Voltage Insulators 6 3.1.4.1 General 6 3.1.4.2 11-20kV Pin Insulators 6 3.1.4.3 11-20kV Tension Insulators 6 3.1.4.3 11-20kV Tension Insulators 6 3.1.4.4 33kV Pension Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.6 33kV - 132kV Post Insulators 6 3.1.5 Post Insulator Clamp Tops 7 3.1.6 33-132kV String Insulators 7 3.1.7 Composite String Insulators 8 3.1.8 Insulator Overvoitage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements 9 3.1.9.1 General 9 3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 11 3.1.9.4 Triggered Spark Gap 11 3.1.9.7 G		3.1.1	Marking	. 4
3.1.3.1 Composite Insulator – Housing and sheds. 5 3.1.3.2 Composite Insulator – Tolerances 6 3.1.4 High Voltage Insulators 6 3.1.4.1 General 6 3.1.4.2 11-20KV Pin Insulators 6 3.1.4.3 11-20KV Tension Insulators 6 3.1.4.3 11-20KV Tension Insulators 6 3.1.4.3 11-20KV Tension Insulators 6 3.1.4.3 31KV Pin Insulators 6 3.1.4.4 33kV Pin Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.6 33kV - 132kV Post Insulators 7 3.1.5 Post Insulator Clamp Tops 7 3.1.6 33-132kV String Insulators 7 3.1.7 Composite String Insulators 7 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements 9 3.1.9.1 General 9 3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 11 3.1.9.4 Tiggered Spark Gap 12 3.1.9.7 <td< th=""><th></th><th>3.1.2</th><th>Composite Insulation Materials</th><th>. 4</th></td<>		3.1.2	Composite Insulation Materials	. 4
3.1.3.2 Composite Insulator – Tolerances 6 3.1.4 High Voltage Insulators 6 3.1.4.1 General 6 3.1.4.2 11-20kV Pin Insulators 6 3.1.4.3 11-20kV Tension Insulators 6 3.1.4.3 11-20kV Tension Insulators 6 3.1.4.3 3kV Pin Insulators 6 3.1.4.3 3kV Tension Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.5 33kV Tension Insulators 7 3.1.6 33-132kV String Insulators 7 3.1.6 33-132kV String Insulators 7 3.1.7 Composite String Insulators 8 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements 9 3.1.9.1 General 9 3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 11 3.1.9.4 Triggered Spark Gap 11 3.1.9.5 Stay Insulators (earthed assemblies) 12 3.1.9.7 66 – 132kV Stay Insulators (unearthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (uneart		3.1.3	Composite Insulator – End Fittings	. 4
3.1.4 High Voltage Insulators 6 3.1.4.1 General 6 3.1.4.1 General 6 3.1.4.2 11-20kV Pin Insulators 6 3.1.4.3 11-20kV Tension Insulators 6 3.1.4.4 33kV Pin Insulators 6 3.1.4.3 11-20kV Tension Insulators 6 3.1.4.4 33kV Tension Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.6 33kV - 132kV Post Insulators 6 3.1.5 Post Insulator Clamp Tops 7 3.1.6 33-132kV String Insulators 7 3.1.7 Composite String Insulators 8 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements 9 3.1.9.1 General 9 3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 11 3.1.9.4 Tiggered Spark Gap 11 3.1.9.5 Stay Insulators (unearthed assemblies) 12 3.1.9.7 Ge - 132kV Stay Insulators (unearthed as		3.1.3	1 Composite Insulator – Housing and sheds	. 5
3.1.4.1 General 6 3.1.4.2 11-20kV Pin Insulators 6 3.1.4.3 11-20kV Tension Insulators 6 3.1.4.3 3kV Pin Insulators 6 3.1.4.4 33kV Pin Insulators 6 3.1.4.4 33kV Pin Insulators 6 3.1.4.4 33kV Pin Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.6 33kV - 132kV Post Insulators 6 3.1.5 Post Insulator Clamp Tops 7 3.1.6 33-132kV String Insulators 7 3.1.7 Composite String Insulators 8 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements 9 3.1.9.1 General 9 3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 11 3.1.9.4 Triggered Spark Gap 11 3.1.9.5 Stay Insulators 12 3.1.9.7 66 - 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 - 132kV Stay Insulators (unearthed assemblies) 12 4.1 External Documentation 13 4.2 Internal Documentation 13		3.1.3	2 Composite Insulator – Tolerances	. 6
3.1.4.2 11-20kV Pin Insulators 6 3.1.4.3 11-20kV Tension Insulators 6 3.1.4.4 33kV Pin Insulators 6 3.1.4.4 33kV Pin Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.6 33kV - 132kV Post Insulators 6 3.1.5 Post Insulator Clamp Tops 7 3.1.6 33-132kV String Insulators 7 3.1.7 Composite String Insulators 7 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements 9 3.1.9.1 General 9 3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 11 3.1.9.4 Triggered Spark Gap. 11 3.1.9.5 Stay Insulators 12 3.1.9.7 66 - 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 - 132kV Stay Insulators (unearthed assemblies) 12 3.1.9.8 66 - 132kV Stay Insulators (unearthed assemblies) 12 3.1.9.8 66 - 132kV Stay Insulators (unearthed assemblies) 12 3.1.9.8 66 - 132kV Stay Insulators (unearthed assemblies) 13		3.1.4	High Voltage Insulators	. 6
3.1.4.3 11-20KV Tension Insulators 6 3.1.4.4 33kV Pin Insulators 6 3.1.4.4 33kV Tension Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.6 33kV – 132kV Post Insulators 6 3.1.4.6 33kV – 132kV Post Insulators 6 3.1.5 Post Insulator Clamp Tops 7 3.1.6 33-132KV String Insulators 7 3.1.7 Composite String Insulators 8 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements 9 3.1.9.1 General 9 3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 11 3.1.9.4 Triggered Spark Gap 11 3.1.9.5 Stay Insulators 12 3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies) 12 3.1.9.7 66 – 132kV Stay Insulators (unearthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) 12 3.1.9.8 61 – 132kV Stay Insulators (unearthed assemblies) 12 3.1.9.8 62 – 132kV Stay Insulators (unearthed assemblies) 12 3.1.9.8 62 – 132kV Sta		3.1.4	1 General	. 6
3.1.4.4 33kV Pin Insulators 6 3.1.4.5 33kV Tension Insulators 6 3.1.4.6 33kV – 132kV Post Insulators 6 3.1.5 Post Insulator Clamp Tops 7 3.1.6 33-132kV String Insulators 7 3.1.7 Composite String Insulators 7 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements 9 3.1.9.1 General 9 9 3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 11 3.1.9.4 Triggered Spark Gap. 11 3.1.9.5 Stay Insulators. 12 3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies) 12 3.1.9.7 66 – 132kV Stay Insulators (uncarthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (uncarthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (uncarthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (uncarthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (uncarthed assemblies) 12 4. References 13 4.1 External Documentation 13 4.2		3.1.4	2 11-20kV Pin Insulators	. 6
3.1.4.5 33kV Tension Insulators 6 3.1.4.6 33kV – 132kV Post Insulators 6 3.1.5 Post Insulator Clamp Tops 7 3.1.6 33-132kV String Insulators 7 3.1.7 Composite String Insulators 8 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements 9 3.1.9.1 General 9 3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 11 3.1.9.4 Triggered Spark Gap. 11 3.1.9.5 Stay Insulators 12 3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (uncarthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (uncarthed assemblies) 12 4. References 13 4.1 External Documentation 13 4.2 Internal Documentation 13		3.1.4	3 11-20KV Tension Insulators	. 6
3.1.4.6 33kV - 132kV Post Insulators. 6 3.1.5 Post Insulator Clamp Tops 7 3.1.6 33-132KV String Insulators. 7 3.1.7 Composite String Insulators 8 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements. 9 3.1.9.1 General 9 3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 10 3.1.9.5 Stay Insulators. 11 3.1.9.5 Stay Insulators 11 3.1.9.6 LV - 33kV Stay Insulators 12 3.1.9.7 66 - 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 - 132kV Stay Insulators (unearthed assemblies) 12 3.1.9.8 46 - 132kV Stay Insulators (unearthed assemblies) 12 4. References 13 4.1 External Documentation 13		3.1.4	4 33kV Pin Insulators	. 6
3.1.5 Post Insulator Clamp Tops 7 3.1.6 33-132KV String Insulators 7 3.1.7 Composite String Insulators 8 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements 9 3.1.9.1 General 9 3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 10 3.1.9.4 Triggered Spark Gap 11 3.1.9.5 Stay Insulators 11 3.1.9.6 LV – 33kV Stay Insulators 12 3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) 12 4.1 External Documentation 13		3.1.4	5 33kV Tension Insulators	. 6
3.1.6 33-132KV String Insulators. 7 3.1.7 Composite String Insulators. 8 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns). 8 3.1.9 Test Requirements. 9 3.1.9.1 General 9 3.1.9.2 Pollution Performance. 10 3.1.9.3 Mechanical Performance. 11 3.1.9.4 Triggered Spark Gap. 11 3.1.9.5 Stay Insulators. 11 3.1.9.6 LV - 33kV Stay Insulators 12 3.1.9.7 66 - 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 - 132kV Stay Insulators (unearthed assemblies) 12 4.1 External Documentation 13 4.2 Internal Documentation 13		3.1.4	6 33kV – 132kV Post Insulators	. 6
3.1.7 Composite String Insulators 8 3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns) 8 3.1.9 Test Requirements 9 3.1.9.1 General 9 3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 10 3.1.9.4 Triggered Spark Gap. 11 3.1.9.5 Stay Insulators 11 3.1.9.6 LV - 33kV Stay Insulators 12 3.1.9.7 66 - 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 - 132kV Stay Insulators (unearthed assemblies) 12 4.1 External Documentation 13 4.2 Internal Documentation 13		3.1.5	Post Insulator Clamp Tops	. 7
3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns)		3.1.6	33-132KV String Insulators	. 7
3.1.9 Test Requirements .9 3.1.9.1 General .9 3.1.9.2 Pollution Performance .10 3.1.9.3 Mechanical Performance .10 3.1.9.4 Triggered Spark Gap .11 3.1.9.5 Stay Insulators .11 3.1.9.5 Stay Insulators .11 3.1.9.6 LV – 33kV Stay Insulators .12 3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies) .12 3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) .12 4. References .13 4.1 External Documentation .13 4.2 Internal Documentation .13		3.1.7	Composite String Insulators	. 8
3.1.9.1 General .9 3.1.9.2 Pollution Performance .10 3.1.9.3 Mechanical Performance .11 3.1.9.4 Triggered Spark Gap .11 3.1.9.5 Stay Insulators .11 3.1.9.6 LV – 33kV Stay Insulators .12 3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies) .12 3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) .12 4. References .13 4.1 External Documentation .13 4.2 Internal Documentation .13		3.1.8	Insulator Overvoltage Protective Devices (Arcing Horns)	. 8
3.1.9.2 Pollution Performance 10 3.1.9.3 Mechanical Performance 11 3.1.9.4 Triggered Spark Gap. 11 3.1.9.5 Stay Insulators. 11 3.1.9.5 Stay Insulators. 11 3.1.9.6 LV – 33kV Stay Insulators 12 3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) 12 4. References 13 4.1 External Documentation 13 4.2 Internal Documentation 13		3.1.9	Test Requirements	. 9
3.1.9.3 Mechanical Performance 11 3.1.9.4 Triggered Spark Gap. 11 3.1.9.5 Stay Insulators. 11 3.1.9.5 Stay Insulators. 11 3.1.9.6 LV – 33kV Stay Insulators. 12 3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) 12 4.1 External Documentation 13 4.2 Internal Documentation 13		3.1.9	1 General	. 9
3.1.9.4 Triggered Spark Gap. 11 3.1.9.5 Stay Insulators. 11 3.1.9.5 LV – 33kV Stay Insulators. 12 3.1.9.6 LV – 33kV Stay Insulators (earthed assemblies) 12 3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) 12 4. References 13 4.1 External Documentation 13 4.2 Internal Documentation 13		3.1.9	2 Pollution Performance	10
3.1.9.5 Stay Insulators. 11 3.1.9.5 Stay Insulators. 12 3.1.9.6 LV – 33kV Stay Insulators. 12 3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) 12 4. References 13 4.1 External Documentation 13 4.2 Internal Documentation 13		3.1.9	3 Mechanical Performance	11
3.1.9.6 LV – 33kV Stay Insulators 12 3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) 12 4. References 13 4.1 External Documentation 13 4.2 Internal Documentation 13		3.1.9	4 Triggered Spark Gap	11
3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies) 12 3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) 12 4. References 13 4.1 External Documentation 13 4.2 Internal Documentation 13		3.1.9	5 Stay Insulators	11
3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies) 12 4. References 13 4.1 External Documentation 13 4.2 Internal Documentation 13		3.1.9	6 LV – 33kV Stay Insulators	12
4. References 13 4.1 External Documentation 13 4.2 Internal Documentation 13		3.1.9	7 66 – 132kV Stay Insulators (earthed assemblies)	12
4.1External Documentation134.2Internal Documentation13		3.1.9	8 66 – 132kV Stay Insulators (unearthed assemblies)	12
4.1External Documentation134.2Internal Documentation13	4.	Re	erences	13
4.2 Internal Documentation				
		4.3		

Document Reference: -		NPS/001/006	Document Type: -	/pe: - Code of Practice			
Version: - 4	.0	Date of Issue: -	June 2024	Page	3	of	67

5.	Definitions	15
6.	Authority for Issue	16
Арр	endix 1 – Schedule of Items	17
Арр	endix 2 - Material Composition	25
Арр	endix 3 – Insulator Technical Details	26
Арр	endix 4 – Typical Insulator Drawings	27
Арр	endix 5 - Self Certification Conformance Declaration	61

Document Reference: -	NPS/001/006	Document Type: -	Code of Pra	ctice		
Version: - 4.0	Date of Issue: -	June 2024	Page	4	of	67

3. Technical Requirements

4.1 General

Insulators shall be designed and tested to fully comply with ENA TS 43-93 unless varied by this specification.

Wherever practicable it is the policy of Northern Powergrid to specify the use of composite or thermoplastic insulation materials over the traditional Glass and Porcelain variants.

4.2 Variances and Clarifications to ENATS 43-93

Where appropriate, the following variations, additions and clarifications to ENA TS 43-93 are referenced to the clause numbers in that document.

3.1.1 Marking

All insulators shall be marked to ensure traceability; in addition, where practicable the marking shall include a manufacturer's product code or a Northern Powergrid commodity code. Marking shall be legible and indelible in accordance with the requirements of BS EN 60383-1. In addition to these requirements, composite string insulators shall be marked in accordance with IEC 61466-1.

3.1.2 Composite Insulation Materials

Composite Insulators shall have a design life of a minimum of 40 years when installed in an outdoor environment in the North East of England.

Insulators manufactured from composite insulation materials and their metal fittings shall, as far as practicable, be designed so that the insulator may be used as a direct replacement for conventional glass and porcelain insulators in common use.

Insulators shall be resistant to the influence of outdoor climatic conditions including ultraviolet (UV) rays and shall be resistant to atmospheric pollutants and be capable of satisfactory performance when subjected to the specified pollution conditions. All composite insulator units shall conform to the requirements of IEC 62217 and the appropriate standard for the insulator type (IEC 61109, IEC 61952) and should normally be grey in colour.

The composite insulator shall comprise an electrical grade corrosion resistant, low seed count (ECR) glassfibre reinforced polymer core onto which is bonded a silicon rubber housing that provides both environmental protection of the rod and electrical performance characteristic of the insulator. The housing shall be effectively bonded to the core along its entire length and provide unbroken coverage. The insulator shed formation shall meet the requirements of IEC/TS 60815-1.

Electric fields shall be effectively managed by the use of appropriate grading rings or combined corona arcing devices, as and where required - dependant on the system voltage.

3.1.3 Composite Insulator – End Fittings

Sealing of the interface between metallic end fittings, sheath and core is critical to prevent moisture ingress.

Sealing by compression only is not considered adequate to provide a long-term sealing solution. Adequate redundancy shall be built into the design of such interface.

The design of end fittings shall have due regard for electric field stresses and the avoidance of electrical discharge of the metallic components. The over-moulding of metal end fittings to provide a sealing interface should be limited to insulators up to 66 kV.

End fittings will be attached onto the rod by a compression process (coaxial or hexagonal compression method), which does not damage the individual fibres of the rod. Crimp control shall be monitored by using acoustic emission devices. All end fittings shall be fully in accordance with IEC 60120 and BS 3288

Document Reference: -	NPS/001/006	Document Type: -	Code of Practice			
Version: - 4.0	Date of Issue: -	June 2024	Page	5	of	67

Part 3 (Ball socket fittings). The die penetration type test within IEC 61109 shall be utilised to prove the integrity of the end fittings.

3.1.3.1 Composite Insulator – Housing and sheds

The housing is the external insulating part of an insulator which provides the necessary creepage and protects the core from the weather.

Unless specified otherwise within this specification all composite insulators shall be manufactured from Silicon Rubber. Due to the variations in the make-up of silicon rubber materials and the potential effects this may have on the long-term performance of such a material to provide the following properties:

- UV resistance
- Tracking resistance
- Hydrophobicity

The following range of good practice characteristic values have been included within this specification

Material Composition	Minimum % per weight
Silicone Polymer (Polydimethylsiloxane) (PDMS)	30%
Filler (ATH Aluminium tri hydrate and fumed silica)	64%
Additional parts (pigments, crosslinkers)	1%

Where manufactures differ from this characteristic composition, they shall provide supporting evidence about the long-term experience of their product formulation.

The following table provides a list of characteristic properties that result from the above formulation.

Manufacturers shall provide details of their characteristic properties for consideration.

Minimum acceptable values are detailed below:

Property	Minimum Value
Density	1.5g/ccm
Passing Voltage level of IEC 60587	4.5kV
Flammability class of IEC 60695-11-10 of 3mm specimen	VO
Tensile Strength (Din 53504-S1)	6 N/mm ²
Break Elongation (Din 53504-S1)	300%
UV resistance - @ 300nm the energy of UV wave length equates to a molecular energy breakdown level of 398kJ/mole *	445 kJ/mole

* Assumed wavelength of UV light (sun) 290 – 350nm

All silicon rubber insulators shall be manufactured using the HTV (high temperature vulcanising) and shall ensure that the interface between the housing and the core is chemically bonded.

To reduce long straight axial mould lines on insulators that are manufactured using the direct moulding technique, consideration shall be given to rotating the mould line by 60° for every metre of housing length. Irrespective of the above statement, the flash or mould lines shall not exceed 1mm in height.

All rods shall be covered by a minimum insulation thickness of 3mm with a proven method for maintaining the concentricity of the silicon rubber over the rod.

All insulator components including the polymeric materials used in the manufacture of insulators shall be traceable from the raw material supplier through the manufacturing process as required under quality assurance procedures.

Document Reference	e:- NPS/001/006	Document Type: -	Code of Pra	ctice		
Version: - 4.0	Date of Issue: -	June 2024	Page	6	of	67

The polymeric material will be described by the manufacturer in defined terms. The use of a generic term such as silicone rubber is not acceptable. Manufacturers shall complete appendix 2 with details about the material.

3.1.3.2 Composite Insulator – Tolerances

The permitted tolerances shall meet the requirements of IEC 61109. In accordance with those standards the following tolerances are permitted for all dimensions without prior special agreement with Northern Powergrid.

 \pm (0.04 x L + 1.5) when L \leq 300mm

± (0.025 x L + 6) when L > 300mm, limited to 50mm

For creepage distance, no negative tolerance is permitted.

3.1.4 High Voltage Insulators

3.1.4.1 General

Insulator design and dimensions shall be specified by the manufacturer/supplier. The specific creepage distance for the insulator shall be based on the recommendations in Clause 3.7 of this specification.

For tension and post insulators, the manufacturer/supplier shall complete appendix 3 of this document to provide details of insulator length and dry arc distance, in accordance with Figure 1, of ENA TS 43-93.

3.1.4.2 11-20kV Pin Insulators

Pin Insulators for use on HV overhead lines with nominal system voltages up to and including 20kV shall be manufactured from HDPE thermoplastic material as detailed in ENA TS 43-93 issue 5, clause 4.5 with dimensional and electrical properties as detailed in Appendix 1 & 4

3.1.4.3 11-20KV Tension Insulators

Tension Insulators for use on HV overhead lines with nominal system voltages up to and including 20kV shall be manufactured from Silicon Rubber Composite material as detailed in clause 3.4 of this specification with dimensional and electrical properties as detailed in Appendix 1 & 4

3.1.4.4 33kV Pin Insulators

Pin Insulators for use on overhead lines with nominal system voltages of 33kV shall be manufactured from Porcelain or HDPE thermoplastic material as detailed in ENA TS 43-93, clause 4.2.1 & 4.2.2 for porcelain or clause 4.5 for thermoplastic material with dimensional and electrical properties as detailed in Appendix 1 & 4

3.1.4.5 33kV Tension Insulators

Tension Insulators for use on HV overhead lines with nominal system voltages of 33kV shall be manufactured from Silicon Rubber Composite material as detailed in clause 3.4 of this specification with dimensional and electrical properties as detailed in Appendix 1 & 4

3.1.4.6 33kV – 132kV Post Insulators

All Line post insulators and support stools for use on 33-132kV lines shall have mechanical ratings of 21kN SCL and should conform generally to ENATS 43-93 Figure 11a or 11c, unless otherwise specified by this specification.

All post insulators shall be manufactured from composite silicon rubber materials as detailed in clause 4.4 of this specification with all dimensional and electrical properties as detailed in Appendix 1 & 4

Document Reference: -		NPS/001/006	Document Type: -	Code of Practice			
Version: - 4.	.0	Date of Issue: -	June 2024	Page	7	of	67

For vertical line post insulators, the fixing holes in the top and bottom end fittings and shall be based on a 127mm PCD in accordance with ENATS 43-93 Figure 11a. If the specified cantilever load of the insulator is only permissible in one direction, the fixing holes in the end fittings shall be orientated about that direction, and the direction of the load shall be clearly indicated on the top end of the insulator.

Vertical Stool or flange type end fittings shall have clearance holes and be provided with 4 x M16 x 65mm bolts. All fixings shall be grade 8.8 and supplied c/w fixing bolts, nuts, washers and spring washers. Alternatively in the case of 132kV Insulators they shall be designed with solid end fittings that have tapped holes with a threaded depth of 20 mm.

Horizontal Post Insulators and horizontal stool top end fittings shall be provided with 4 x M16 x 65mm bolts pre-installed in the 127mm PCD flanges. The lower end fittings of the stools shall be provided with 2 x M22 x 160mm bolts pre-installed into the flags that interface with the pole bendable base units. All fixings shall be grade 8.8 and supplied c/w fixing bolts, nuts, washers and spring washers.

3.1.5 Post Insulator Clamp Tops

The 132 kV vertical and horizontal line post insulators shall be supplied complete with trunnion style conductor clamps and clamp adapters to fit the top end fittings. The 33/66kV Universal Vertical/Horizontal Line Post Insulators require a variation in this trunnion design such that the trunnion clamp bracket and trunnion clamp allows both side and top mounting.

As a default, all trunnion clamps shall be supplied to allow the insulators to be used with 200mm2 AAAC conductor although they shall be designed to accommodate smaller copper and aluminium conductor sizes through the use of alternative clamps. An example of the typical conductor clamping ranges can be seen in Northern Powergrid drawing 1091010487 sht 6.

A typical conductor clamp is shown in ENA TS 43-93 Figure 13 and the clamp shall be so designed that the following requirements listed below are satisfied: -

- a) The effects of vibration and conductor swing, both on the conductor and fitting itself, are minimised.
- b) Secure clamping of the conductor is achieved without causing kinking or any undue deformation of the conductor stranding. To assist in this requirement the clamps shall be designed to accommodate a wrap of copper or aluminium chaffing tape installed as appropriate to match the conductor types.
- c) If manufactured from metal other than aluminium alloy, the clamp shall incorporate an aluminium liner when used on aluminium conductors.
- d) Aluminium based clamps shall not be used with copper conductors.
- e) At pivot points, adjustable pins with a locking arrangement shall be provided to ensure that the bearing depths of pins called for in ENA TS 43-93 Figure 13 are achieved.

3.1.6 33-132KV String Insulators

In general, all new Insulator strings shall be provided as composite string insulators as detailed in ENA TS 43-93 clause 5.7 however where traditional glass or porcelain string insulators are still required for specific purposes, mainly emergency repair functions on existing strings, then they shall comply with the following requirements.

These units shall be nominally 255mm diameter disc insulators with 140mm or 178mm centres. All ball and socket couplings shall be in accordance with the requirements of BS 3288 Part 3 designation 16B, 20 or 24. The design of these interfaces shall meet the requirements of ENA TS 43-93 clause 5.6

Appendix 1 lists the range of insulators required with detailed drawings shown in Appendix 4.

The string insulators may be used in the horizontal disposition at section or terminal positions or in a vertical disposition forming part of a suspension insulator set.

Document Reference: -	NPS/001/006	Document Type: -	Code of Pra			
Version: - 4.0	Date of Issue: -	June 2024	Page	8	of	67

The specific creepage distance for each unit, when multiplied by the total number of units in a string, shall be sufficient to achieve the total minimum creepage distances detailed in Clause 7 of this specification.

Note:

Additional discs may be required in strings to meet exceptional pollution conditions, thus extending creepage distances.

Typically, they are configured as detailed below:

- i. 11kV one units (unearthed supports) (two units at earthed supports)
- ii. 20kV two units
- iii. 33kV three units
- iv. 66kV five units
- v. 132kv Horizontal disposition 9 units
- vi. 132kV Vertical disposition 11 units (option to utilise 9 unit variant)

3.1.7 Composite String Insulators

Composite string insulators shall be designed for use on overhead lines with a nominal system voltage up to and including 132 kV. The string insulators may be used in the horizontal disposition at section or terminal positions, or in a vertical disposition forming part of suspension insulator sets. The specified mechanical load class and end fittings shall be in accordance with the schedules in appendix 1 of this specification and BS EN 61466-1. The specific creepage distance for the string insulator shall be based on Clause 7 of this specification.

Composite string insulators shall be designed with the intention that they may be used as a direct replacement to conventional insulator strings which were made up from multiple disc insulators and based on 127mm, 140mm, 171mm or 178mm centres.

NOTE: Conventional ratings and couplings are described in BS EN 61466-2.

For 132 kV insulators, it is not considered practical to install separate corona rings and arcing horns. Consequently, combined corona arcing devices shall be installed on the energized end of 132kV composite line insulators to both limit the e-field intensity (provide electrical grading) and provide a stable path for overvoltage flashovers and potential power arcs.

Manufactures shall quote for insulator lengths as detailed in the schedules in Appendix 1 of this specification to achieve compliance with existing string lengths but are encouraged to offer shorter alternatives for consideration providing they still meet all electrical parameters.

Composite tension and suspension insulators are generally specified as complete assemblies, hence manufactures shall include for required end to end fittings e.g., all shackles and arcing horns as specified in clause 3.5 and or Appendix 1 or the drawings in Appendix 4.

The Specified Mechanical Load class and end fittings type shall be in accordance with IEC 61466-1. Ball and socket couplings shall be in accordance with BS 3288 Part 3 or IEC60120 as appropriate to the specified rating.

3.1.8 Insulator Overvoltage Protective Devices (Arcing Horns)

Where specified within the descriptions in Appendix 1, 66 and 132kV insulators shall be supplied with overvoltage protection devices in the form of arcing horns. Manufactures shall provide a compatible set of overvoltage protective devices designed so as to prevent any arc current flowing through the end fittings of the insulator, all protective devices shall attach to the hardware at each end of the insulator.

Document Reference: -		NPS/001/006	Document Type: -	Code of Pra	ctice		
Version: -	4.0	Date of Issue: -	June 2024	Page	9	of	67

The design of the protective devices will be required to take into account the following requirements: -

- a) Shall effectively protect the insulator units and the fittings from damage from power arcs
- b) Shall effectively improve the voltage distribution along the insulator string
- c) Shall effectively improve the corona performance of the insulator set
- d) Shall effectively inhibit the formation of dry band arcing on composite insulators adjacent to end fittings.

	Required Arc Gaps for Standard Insulator sets						
Voltage	Approach Set (First 1	.6km)	Normal Set				
	Non-Composite Strings	Composite Strings	Non-Composite Strings	Composite Strings			
132 kV Tension	1000mm (39")	1000mm	1120mm (23.5")	1175mm			
66 kV	453mm (18")	440mm	570mm (22.5")	540mm			
33 kV	* Not Required	* Not Required	* Not Required	*Not Required			
132kV Reduced cle	arance suspension stri	ngs based on 9 x 140	mm discs				
132 kV	851mm (provides a calculated impulse value of 555kV	925mm	851mm min	1025mm (provides a calculated impulse value of 565kV)			

Notes:

- Lab tests have shown that composite insulators have a lower electrical withstand breakdown than traditional ceramic insulators, a traditional "Normal Set" gap of 1120mm breaks down at approximately 620kV and hence needs to be increased to 1175mm to achieve 650kV withstand.
- The "Approach Set" gap on the 66kV needs to be reduced from 453mm to 440m to maintain the 325kV ratings without compromising the dry arc gap.
- It is assumed that surge arrestors will always be installed on 33kV Cable terminations
- Where 275kV or 400kV lines are operated at 132kV, extended arcing horns shall be used for the first 1.6km from substations or sealing ends to obtain a 1000mm arc gap.

3.1.9 Test Requirements

3.1.9.1 General

The design of the insulators shall be such that the electrical withstand voltages in Table 1 are achieved.

Atmospheric correction factors shall be applied in accordance with IEC 60060-1.

The tests shall be performed in accordance with:

- · IEC 60383-1 for insulator units, line post insulators and pin insulators;
- IEC 60383-2 for insulator strings and sets;

Document Reference: - NP		NPS/001/006	Document Type: -	Code of Pra	ctice		
Version: - 4.0	0	Date of Issue: -	June 2024	Page	10	of	67

• IEC 61109 for composite string insulators and;

• IEC 61952 for composite line post insulators.

Table 1—Electrical withstand voltages

Nominal System Voltage (Minimum)	11 kV Earthed & Unearthed	20 kV Unearthed	20 kV (Earthed	33 kV	66 kV	132 kV
Wet 1 min power frequency withstand voltage (kV)	50	50	70	90	140	275
Dry impulse withstand voltage (kV)	95	125	125	200	325	650

Design, type, sample, and routine tests shall be undertaken where appropriate in accordance with the requirements of ENA TS 43-93, IEC 60383, BS EN 60437, BS EN 60507, IEC 62217, IEC 61109, and IEC 61952, where applicable.

For guidance, a summary of the type and sample test requirements is given ENA TS 43-93 Annex A

3.1.9.2 Pollution Performance

The insulators detailed in this specification have been designed to conform to the requirements ENA TS 43-93 clause 7 and IEC/TS 60815-1 "*Definitions, information and general principles*", IEC/TS 60815-2 "Ceramic and glass insulators for a.c. systems"), and IEC/TS 60815-3 "Polymer insulators for a.c. systems".

The insulator design and the associated SCD (Specific Creepage Distance) have been determined by past experience, as described in IEC/TS 60815-1, Approach 1 using values based generally around the following: -

<= 33kV – (20 mm/kV (system voltage) for vertical insulators & 14 mm/kV for insulators in the horizontal plane)

>= 66kV – (25 mm/kV (system voltage) for vertical insulators & 20 mm/kV for insulators in the horizontal plane)

In accordance with IEC/TS 60815-, Approach 1 the above SCD values correspond to the USCD as follows:

SCD	USCD	SPS Class
(Specific Creepage Distance) for three phase A.C. systems	(Unified Specific Creepage Distance)	(Site Pollution Severity)
20	34.7	(C) Medium
25	43.3	(D) Heavy

Unless specified otherwise the minimum creepage distances for high voltage insulators and insulator sets shall be as defined in the following table which is based on ENA TS 43-93 Table 4

Document Reference	:- NPS/001/006	Document Type: -	Code of Pra	ctice		
Version: - 4.0	Date of Issue: -	June 2024	Page	11	of	67

Site Pollution				Minim	um creepage	e distance	(mm)			
Class	11	٢V	20	٢V	33	κV	66	κV	132	2kV
IEC/6018	Vert. (Pin, Post, Susp.)	Horiz. (Tension)	Vert. (Pin, Post, Susp.)	Horiz. (Tension)						
Medium	240mm	168mm	480mm	336mm	660mm	462mm	n/a	n/a	n/a	n/a
Heavy	n/a	n/a	n/a	n/a	n/a	n/a	1813mm	1268mm	3625mm	2538mm

3.1.9.3 Mechanical Performance

The required mechanical ratings of insulators are given below. All tests shall be carried out in accordance with IEC 60383-1, BS EN 61109 or IEC 61952 as appropriate.

- The SCL (or minimum mechanical failing load) of pin insulators and line post insulators, shall be not less than 10 kN, for lines up to 33 kV.
- The SCL (or minimum mechanical failing load) for line post insulators shall be not less than 21 kN, for 33, 66 and 132 kV lines.
- The SCL (or minimum mechanical failing load) of pilot post insulators shall be not less than 8 kN
- The SML (or minimum mechanical failing load) of suspension string insulator units shall be 70 kN.
- The SML (or minimum mechanical failing load) of tension string insulator units shall be 70 kN,125kN or 190kN depending upon the application.

The required mechanical performance of insulators have been specified for each insulator in the schedules of Appendix 1

3.1.9.4 Triggered Spark Gap

Triggered spark gaps are a porcelain insulator assembly used to provide over voltage protection on 11, 20 and 33kV wood pole overhead lines. The unit shall be supplied with two sets of arcing horns to facilitate an early flashover of high over voltages. The arc gap dimensions are detailed below. Designs using composite material may be considered providing manufacturers can provide evidence of composite materials working in similar working conditions

Voltage (kV)	Triggered Gap (mm)	Main Arc Gap (mm)	Drawing Number
11	3	25	1.09.101.0603 Sheet 1
20	10	35 - 38	1.09.101.0603 Sheet 2
33	10	45 - 48	1.09.101.0603 Sheet 2

Appendix 1 lists the range of spark gaps required with detailed drawings shown in Appendix 4.

3.1.9.5 Stay Insulators

Stay insulators shall be manufactured in accordance with the electrical and mechanical loadings detailed in ENA TS 43-91. See NSP/004/104 for detail arrangements and selections.

Document Reference:	- NPS/001/006	Document Type: -	Code of Pra	ctice		
Version: - 4.0	Date of Issue: -	June 2024	Page	12	of	67

3.1.9.6 LV – 33kV Stay Insulators

Shall be manufactured from porcelain and designed to comply with the dimensions of type 1 and type 2 arrangements as shown in figure 3 of ENA TS 43-91.

3.1.9.7 66 – 132kV Stay Insulators (earthed assemblies)

Shall be manufactured from porcelain and be designed to be in compliance with ENA TS 43-91 fig 3 type 1.

3.1.9.8 66 – 132kV Stay Insulators (unearthed assemblies)

Shall be single composite insulator assemblies complete with overvoltage protection arcing horns that comply with clause 5.8. The assemblies shall be designed to comply with ENA TS 41-91, IEC 61109 and IEC 61466. See drawing 1091010372 sht 2 for more details.

Document Reference: - NPS/001/006		Document Type: -	Code of Pra	ctice		
Version: - 4.0	Date of Issue: -	June 2024	Page	13	of	67

4. References

4.1 External Documentation

Reference	Title
ENA TS 43-93	Technical Specification for Line Insulators
ENA TS 41-91	Technical Specification for Stay Strands and Stay Fittings for Overhead Lines
IEC 60120 :2020	Ball and socket couplings of string insulator units — Dimensions
	Insulators for overhead lines with nominal voltage above 1 kV —
BS EN 60383 – 1	Part 1: Ceramic or glass insulator units for a.c. systems — Definitions, test methods and acceptance criteria
BS EN 60383 – 2	Insulators for overhead lines with a nominal voltage above 1000 V —
BS EN 00383 - 2	Part 2: Insulator strings and insulator sets for a.c. systems — Definitions, test methods and acceptance criteria
BS EN 60372	Locking devices for ball and socket couplings of string insulator units – Dimensions and tests
IEC 60060-1	High-voltage test techniques. Part 1: General definitions and test requirements
DC 2200 2	Insulator and conductor fittings for overhead power lines –
BS 3288 – 2	Part 2: Specification for a range of fittings.
BS 3288 – 3	Insulator and conductor fittings for overhead power lines –
B3 5266 - 5	Part 3: Dimensions of ball and socket couplings of string insulator units
IEC/TS 60815-1	Selection and dimensioning of high-voltage insulators intended for use in polluted conditions. Definitions, information and general principles
IEC/TS 60815-2	Selection and dimensioning of high-voltage insulators intended for use in polluted conditions. Ceramic and glass insulators for a.c. systems
IEC/TS 60815-3	Selection and dimensioning of high-voltage insulators intended for use in polluted conditions. Polymer insulators for a.c. systems
IEC 61109	Insulators for overhead lines. Composite suspension and tension insulators for a.c. systems with a nominal voltage greater than 1000 V. Definitions, test methods and acceptance criteria
BS EN 61466 – 1	Composite string insulator units for overhead lines with a nominal voltage greater than 1000 V. Part 1: Standard strength classes and end fittings
	Composite string insulator units for overhead lines with a nominal voltage greater than
BS EN 61466 – 2	1 000 V.
	Part 2: Dimensional and electrical characteristics
150 (2217	Polymeric HV insulators for indoor and outdoor use. General definitions, test methods
IEC 62217	and acceptance criteria

4.2 Internal Documentation

Reference	Title
NSP/004/104	(OHI 4) Guidance on the Types and Installation Requirements for Stays
NSP/004/127	(OHI 27) Guidance on the selection and application of insulators

Document Reference: -	NPS/001/006	Document Type: - Co		Code of Practice		
Version: - 4.0	Date of Issue: -	June 2024	Page	14	of	67

4.3 Amendments from Previous Version

Reference	Description
Entire document	Reference document number and clause updated
3.1.4 High Voltage Insulator	Corrected clause number and Appendix number
3.3 33-132kV String Insulators	Updated reference standards to BS3288-3 instead of HD 474 S1
3.10.2 66-132kV Stay Insulator (earthed assemblies)	Corrected the type of insulator to "Type 1"
	Wording aligned with commodity description
Appendix 1 Schedule of items	Descriptions updated
Appendix 1 Schedule of items	Update item 251542
	Added item 251555
	Added drawings:
	1000439305
Appendix 4 Typical Insulator	1091010428 sht 7,8,9,10,11,12,13
Drawings	1091010484 sht 2
	1091010487 sht 6
	1091010488 sht 8

Document Reference: -		NPS/001/006	Document Type: -				
Version: - 4.0)	Date of Issue: -	June 2024	Page	15	of	67

5. Definitions

Term	Definition
Brittle fracture	Brittle fracture is a failure mode where stress-corrosion cracking (SCC) of glass-
Britle fracture	reinforced polymer (GRP) can result in total mechanical failure of the insulator
Type ECR or E-CR	Electrolytic Corrosion Resistant (Low or boron free glass)
Seed Count	Seeds are gaseous inclusions (voids) inside the fibres left from the glass fibre
Seed Count	manufacturing process
Туре Е	Electrical Grade Glass
Earthed	Earthed Assemblies are wood poles or steel structures where the crossarm
Eartheu	steelwork is electrically connected to earth and hence provides a lower BIL
Unearthed	Unearthed structures generally provide a higher BIL as they are insulated from
olleartiled	earth
BIL	Basic Insulation Level
EVA material	Is a co-polymer of Ethylene and Ethylene Vinyl Acetate
Dry Lightning Withstand	The lightning voltage which the insulator withstands dry, under the prescribed
Voltage	conditions of test
Wet Power Frequency	The power frequency voltage which the insulator withstands wet, under the
Withstand Voltage	prescribed conditions of test
Puncture Voltage	The voltage which causes puncture of a string insulator unit or rigid insulator
Functure voltage	under the prescribed conditions of test
	Shortest distance in the air at which a puncture voltage can cause an arc to travel
Dry Arc Distance	between two conductive parts which normally have the operating voltage
	between them
	Shortest distance or the sum of the shortest distances along the surface of an
Creepage Distance	insulator between two conductive parts which normally have the operating
	voltage between them
Specific Creepage Distance (SCD)	Specific Creepage Distance for three phase AC systems as defined in IEC/TS 60815
Unified Specific Creepage	Creepage distance of an insulator divided by the r.m.s. value of the highest
Distance (USCD)	operating voltage across the insulator as defined in IEC/TS 60815
Site Pollution Severity (SPS)	Site Pollution Severity as defined in IEC/TS 60815
Maximum Design Cantilever	Load level above which damage to the core begins to occur and which is the
Load (MDCL)	ultimate limit for service loads
Specified Cantilever Load	Cantilever load which can be withstood by the insulator at the line end fitting
(SCL)	when tested under the prescribed conditions
Specified Mechanical Load (SML)	Load, specified by the manufacturer, which is used for mechanical tests
Mechanical Failing Load (MFL)	Maximum load reached when tested under the prescribed conditions of test

Document Reference: -		NPS/001/006	Document Type: -				
Version: - 4.0		Date of Issue: -	June 2024	Page	16	of	67

6. Authority for Issue

6.1 CDS Assurance

I sign to confirm that I have completed and checked this document and I am satisfied with its content and submit it for approval and authorisation.

_			Date
	Deb Dovinson	Governance Administrator	27/03/2024

6.2 Author

I sign to confirm that I have completed and checked this document and I am satisfied with its content and submit it for approval and authorisation.

Review Period - This document should be reviewed within the following time period:

Standard CDS review of 3 years?	Non	Non-Standard Review Period & Reason		
No	Period: 5 years	Reason: Update will be dicta renewal date or any significa specification or documents r	nt changes in the	
Should this document be displayed on the Northern Powergrid external website?			Yes	

		Date
Aaron Chung	Policy & Standards Engineer	02/04/2024

6.3 Technical Assurance

I sign to confirm that I am satisfied with all aspects of the content and preparation of this document and submit it for approval and authorisation.

		Date
Ged Hammel	Lead Policy & Standards Engineer	27/03/2024
Steve Salkeld	Policy & Standards Engineer	25/06/2024

6.4 Authorisation

Authorisation is granted for publication of this document.

_			Date	
	Paul Black	Head of System Engineering	22/05/2024	

Document Reference: -		NPS/001/006	Document Type: -	Code of Practice			
Version: -	4.0	Date of Issue: -	June 2024	Page	17	of	67

Appendix 1 – Schedule of Items

Pin Insulators – (11- 33kV Wood Pole Lines)

Cat. No.	Description	Drawing Number
253833	11/20kV HDPE Pin Insulator, 10kN SML, 70kV Wet Withstand, 125kV Dry Lightning Withstand, 78mm Neck Dia & 25mm Groove	1091010486 sht. 13
	for use on all 11 and 20kV supports.	ENA TS 43-93 fig2
253423	33kV Brown Porcelain or HDPE Pin Insulator, 10kN SML, 90kV Wet Withstand, 200kV Dry Lightning Withstand, 120mm Neck &	1091010486 sht4
	25mm Groove for use on 33kV supports.	ENA TS 43-93 Fig. 6

Composite String Insulators – (11 – 33kV Wood Pole Lines)

Cat. No	Description	Drawing Number
253706	11/20kV Composite Tension Insulator. 70KN SML, 70kV Wet Withstand, 125kV Dry Lightning Withstand, 280mm spacing, 16mm	1091010487 sht. 24 &
	ball/socket end fittings for use on all 11 and 20kV supports.	ENA TS 43-93 Fig. 4
216135	11kV Composite Flying Section Insulator. 70kN SML, 50kV Wet Withstand, 95kVDry Lightning Withstand, 280mm spacing, 16mm	1091010485 sht. 10 &
	ball/ball end fittings for use on 11kV supports.	ENA TS 43-93 Fig. 5
247412	20kV Composite Flying Section Insulator. 70kN SML, 70kV Wet Withstand, 125kV Dry Lightning Withstand, 420mm spacing,	
	16mm ball/ball end fitting for use on 20kV supports.	ENA TS 43-93 Fig. 5
216150	33kV Composite Tension Insulator. 70kN SML, 90kV Wet Withstand, 200kV Dry Lightning Withstand, 420mm spacing, 16mm	1091010487 sht. 23 &
	ball/socket end fittings for use on 33kV (43-40 Tension, CE/C/37 Suspension) supports	ENA TS 43-93 Fig. 7
251546	33kV Composite Tension Insulator. 125kN SML, 90kV Wet Withstand, 200kV Dry Lightning Withstand, based on (3x178mm) or	ENA TS 43-93 Fig. 9
	534mm spacing, 462mm min creep, 20mm ball/socket end fittings for use on (CE/C/37 and OHL9/10 Tension Supports)	
Info Only	33kV Composite Tension Insulator. 125kN SML, 90kV Wet Withstand, 200kV Dry Lightning Withstand, based on (4x178mm) or	1091010487 sht.27&
	712mm spacing, 462mm min creep, 20mm ball/socket end fittings for use on (CE/C/37 Tension Supports) (refer to cat number	ENA TS 43-93 Fig. 9
	216218)	

Composite Post Insulators – (33, 66 & 132kV OHL9/10 Wood Pole Lines)

Cat. No	Description	Drawing Number
346405	33kV Universal Vertical/Horizontal Composite Line Post Insulator. 21kN SCL, 600mm high mounted on 127mm PCD flange, 90kV Wet withstand, 200kV Dry Lightning Withstand complete with universal trunnion clamp bracket and trunnion clamp that allows both side and top mounting for use on 33kV OHL9/OHL10 Intermediate supports.	1091010487 sht.37
346406	33kV Vertical Stool for use with 33kV Composite Line Post Insulator. 976mm long mounting stool. For use with cat 346405.	1091010487 sht.40

		Document Type: - Code of Praction		ctice	ice		
Version: -	4.0	Date of Issue: -	June 2024	Page	18	of	67

346407	33kV Horizontal Stool for use with 33kV Composite Line Post Insulator. 1000mm long mounting stool. For use with cat 346405.	1091010487 sht.41
346402	66kV Universal Vertical/Horizontal Composite Line Post Insulator. 21kN SCL, 930mm high mounted on 127mm PCD flange, 140kV Wet withstand, 325kV Dry Lightning Withstand complete with universal trunnion clamp bracket and trunnion clamp that allows both side and top mounting for use on 66kV OHL9/OHL10 Intermediate supports.	1091010487 sht.36
346403	66kV Vertical Stool for use with 33kV Composite Line Post Insulator. 646mm long mounting stool. For use with cat 346402.	1091010487 sht.38
346404	66kV Horizontal Stool for use with 33kV Composite Line Post Insulator. 670mm long mounting stool. For use with cat 346402.	1091010487 sht.39
251551	132kV Vertical Composite Line Post Insulator. 21kN SCL, 1584mm high mounted on 127mm PCD flange, 375kV Wet withstand, 650kV Dry Lightning Withstand complete with trunnion clamp for use on 132kV OHL9/OHL10 Intermediate supports	1091010487 sht.18
251550	Stool 132kV Vertical (Pilot Insulator) Stool for use with 132kV Composite Line Post Insulator. 300mm long mounting stool. For use with cat 251551.	1091010487 sht.34
251548	132kV Horizontal Composite Line Post Insulator. 21kN SCL, 1616mm long, 375kV Wet withstand, 650kV Dry Lightning Withstand complete with trunnion clamp and designed for mounting into a bendable pole base or directly into pole top steelwork for use on 132kV OHL9/OHL10 Intermediate supports	1091010487 sht.16 item 1
251549	Bendable base for 33-132kV Horizontal Composite Line Post Insulators. Designed to mount and orientate 33,66 or 132kV horizontal line post insulators 17° above the horizontal.	1091010487 sht.16 item 2
253702	66kV Composite Pilot Post Insulator. 10kN SCL, 795mm high, 140kV Wet withstand, 325kV Dry Lightning Withstand, with trunnion clamp c/w with Single 50mm Mounting Stud.	1091010487 Sht.12

Composite Suspension String Insulators – 66kV (OHL4 - CE/C/37 Specifications)

Cat. No	Description	Drawing Number
Info Only	33KV Composite Suspension Insulator Assembly for OHL4 or CE/C/37 construction see cat 216150	1091010487 sht. 23
		1091010488 sht. 6
251542	66kV Composite Suspension Insulator Assembly for OHL4 or CE/C/37 construction. 70kN SML, based on (5x140mm) 700mm	1091010487 sht. 20
	spacing, 140kV Wet Withstand, 325kV Dry Lightning Withstand, 1268mm min. creep, 16mm ball/socket end fittings supplied c/w	1091010488 sht. 6
	ball ended hook (fig 11 ref 15/32), socket clevis (fig21 Ref 15/31A) and arcing horns to provide an Approach Arc Gap of 440mm.	
	Note for Normal/Unearthed sites the top arcing horn is not required, hence former use of cat 251541 satisfied by this item	
251555	66kV Composite Suspension Insulator Assembly for OHL4 or CE/C/37 construction. 70kN SML, based on (5x127mm) 635mm	ТВА
	spacing, 140kV Wet Withstand, 325kV Dry Lightning Withstand, 1268mm min. creep, 16mm ball/socket end fittings supplied c/w	
	ball ended hook (fig 11 ref 15/32), socket clevis (fig21 Ref 15/31A) and arcing horns to provide an Approach Arc Gap of 440mm.	

Document F	Reference: -	NPS/001/006	Document Type: -	ment Type: - Code of Practice		ce		
Version: -	4.0	Date of Issue: -	June 2024	Page	19	of	67	

Composite Tension String Insulators – (33, 66 &132kV) for use on OHL4 / CE/C/37 & OHL9/10 Specifications

Cat. No	Description	Drawing Number
Info Only	33kV Composite Tension Insulator. 125kN SML, for use on (CE/C/37 Tension and OHL9/10 Tension Supports (All situations) – see cat 251546	ТВА
	66kV Composite Tension Insulator Assembly for (CE/C/37, OHL9/10 & OHL4) construction, 120kN SML, based on (5x178mm)	1091010487 sht. 21
251539	890mm spacing, 140kV Wet Withstand, 325kV Dry Lightning Withstand, 1268mm min creep, 20mm ball/socket end fittings supplied c/w ball ended eye link fitting (fig 13 ref28/30), socket tongue (fig 26, ref 28/36B) and arcing horns to provide an Approach Arc Gap of 440mm	1091010488 sht. 9
251536	66kV Composite Tension Insulator Assembly for (CE/C/37, OHL9/10 & OHL4) construction, 120kN SML, based on (5x178mm)	1091010487 sht. 21
	890mm spacing, 140kV Wet Withstand, 325kV Dry Lightning Withstand, 1268mm min creep, 20mm ball/socket end fittings supplied c/w ball ended eye link fitting (fig 13 ref28/30), socket tongue (fig 26, ref 28/36B) and arcing horns to provide an Normal Arc Gap of 540mm	1091010488 sht. 9
251559	66kV Composite Tension Insulator Assembly for (CE/C/37, OHL9/10 & OHL4) construction, 70kN SML, based on (5x140mm)	1091010487 sht. 20
	700mm spacing, 140kV Wet Withstand, 325kV Dry Lightning Withstand, 1268mm min creep, 16mm ball/socket end fittings supplied c/w ball ended eye link fitting (fig 13 ref 15/30), socket tongue (fig 26, ref 15/35) and arcing horns to provide an Approach Arc Gap of 440mm	1091010488 sht. 8
251560	66kV Composite Tension Insulator Assembly for (CE/C/37, OHL9/10 & OHL4) construction, 70kN SML, based on (5x140mm)	1091010487 sht. 20
	700mm spacing, 140kV Wet Withstand, 325kV Dry Lightning Withstand, 1268mm min creep, 16mm ball/socket end fittings supplied c/w ball ended eye link fitting (fig 13 ref 15/30), socket tongue (fig 26, ref 15/35) and arcing horns to provide an Normal Arc Gap of 540mm	1091010488 sht. 8
251553	132kV Composite Tension Insulator Assembly for (OHL9/10) construction, 120kN SML, based on (9x178mm) 1602mm spacing,	1091010487 sht. 29
	275kV Wet Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 20mm ball/socket end fittings supplied c/w all fittings from Earth End Shackle to Live End socket tongue, including arcing horns for Approach Arc gap (1000mm gap) but excluding compression terms	1091010487 sht. 31
251552	132kV Composite Tension Insulator Assembly for (OHL9/10) construction, 125kN SML, based on (9x178mm) 1602mm spacing,	1091010487 sht. 29
	275kV Wet Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 20mm ball/socket end fittings supplied c/w all fittings from Earth End Shackle to Live End socket tongue, including arcing horns for Normal Arc gap (1175mm gap) but excluding compression terms	1091010487 sht. 30

Document Reference: - NPS/		NPS/001/006	Document Type: -	Code of Practice			
Version: -	4.0	Date of Issue: -	June 2024	Page	20	of	67

Composite Post Insulators Arcing Horn Kits (66 – 132kV Wood Pole Lines)

Cat. No	Description	Drawing Number
Info Only	Arcing Horn Kit and extension Arc Horn for application onto item insulator drawing (1091010487 sht. 18) Vertical Line Post Insulators in approach zones only (Excludes Insulator) as per arrangement drawing (refer to cat number 346397)	1091010487 sht.32
Info Only	Arcing Horn Kit and extension Arc Horn for application onto insulator drawing (1091010487 sht.16) Horizontal Line Post Insulators in approach zones only (Excludes Insulator) as per arrangement drawing (refer to cat number 346398)	1091010487 sht.33

Suspension Insulator String Assemblies – (66 -132kV Tower/Mast Lines)

Cat. No	Description	Drawing Number
251535	66kV Composite Suspension Insulator Assembly (Towers). 70kN SML, based on (5x140mm) 700mm spacing, 140kV Wet	1091010487 sht. 20
	Withstand, 325kV Dry Lightning Withstand, 1268mm min. creep, 16mm ball/socket end fittings supplied c/w ball ended hook (fig	1091010428 sht. 7
	11 ref 15/32), socket clevis (fig21 Ref 15/31A) and arcing horns to provide an Approach Arc Gap of 440mm.	
251534	66kV Composite Suspension Insulator Assembly (Towers). 70kN SML, based on (5x140mm) 700mm spacing, 140kV Wet	1091010487 sht. 20
	Withstand, 325kV Dry Lightning Withstand, 1268mm min. creep, 16mm ball/socket end fittings supplied c/w ball ended hook (fig	1091010428 sht. 7
	11 ref 15/32), socket clevis (fig21 Ref 15/31A) and arcing horns to provide a Normal Arc Gap of 540mm.	
251533	132kV Composite Suspension Insulator Assembly (Towers). 70kN SML, based on (11x140mm) 1540mm spacing, 275kV Wet	1091010428 sht. 7
	Withstand, 650kV Dry Lightning Withstand, 3625mm min. creep, 16mm ball/socket end fittings supplied c/w ball ended hook (fig	
	11 ref 15/32), socket clevis (fig21 Ref 15/31A) and arcing horns to provide an Approach Arc Gap of 1000mm.	
251561	132kV Composite Suspension Insulator Assembly (Towers). 70kN SML, based on (11x140mm) 1540mm spacing, 275kV Wet	1091010428 sht. 7
	Withstand, 650kV Dry Lightning Withstand, 3625mm min. creep, 16mm ball/socket end fittings supplied c/w ball ended hook (fig	
	11 ref 15/32), socket clevis (fig21 Ref 15/31A) and arcing horns to provide a Normal Arc Gap of 1175mm.	
251562	132kV Composite Suspension Insulator Assembly Reduced Clearance (Towers). 70kN SML, based on (9x140mm) 1260mm	1091010428 sht. 7
	spacing, 275kV Wet Withstand, 555kV Dry Lightning Withstand, 3625mm min. creep, 16mm ball/socket end fittings supplied c/w	
	ball ended hook (fig 11 ref 15/32), socket clevis (fig21 Ref 15/31A) and arcing horns to provide an Approach Arc Gap of 925mm.	
251531	132kV Composite Suspension Insulator Assembly Reduced Clearance (Towers). 70kN SML, based on (9x140mm) 1260mm	1091010428 sht. 7
	spacing, 275kV Wet Withstand, 555kV Dry Lightning Withstand, 3625mm min. creep, 16mm ball/socket end fittings supplied c/w	
	ball ended hook (fig 11 ref 15/32), socket clevis (fig21 Ref 15/31A) and arcing horns to provide a Normal Arc Gap of 1025mm.	

C	Document F	Reference: -	NPS/001/006	Document Type: -	- Code of Practice				
	Version: -	4.0	Date of Issue: -	June 2024	Page	21	of	67	

Tension Insulator String Assemblies – (66 -132kV Tower/Mast Lines)

Cat. No.	Purpose for Insulator assembly	Drawing Number
251530	66kV Composite Tension Insulator Assembly for Tower Lines. 120kN SML, based on (5 x 178mm) 890mm spacing, 140kV Wet	1091010428 sht. 8
	Withstand, 325kV Dry Lightning Withstand, 1268mm min creep, 20mm ball/socket end fittings supplied c/w all fittings from Earth	66kV version
	End Shackle to Live End Socket Tongue, including arcing horns to provide for Approach Arc Gap of 440mm. Excluding sag	
	adjusters	
251563	66kV Composite Tension Insulator Assembly for Tower Lines. 120kN SML, based on (5 x 178mm) 890mm spacing, 140kV Wet	1091010428 sht. 8
	Withstand, 325kV Dry Lightning Withstand, 1268mm min creep, 20mm ball/socket end fittings supplied c/w all fittings from Earth	66kV version
	End Shackle to Live End Socket Tongue, including arcing horns to provide for Normal Arc Gap of 540mm. Excluding sag adjusters.	
251528	132kV Composite Tension Insulator Assembly for Tower Lines. 120kN, based on (9 x 178mm) 1602mm spacing, 275kV Wet	1091010428 sht. 8
	Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 20mm ball/socket end fittings supplied c/w all fittings from Earth	
	End Shackle to Live End Socket Tongue, including arcing horns to provide for Approach Arc Gap of 1000mm. Excluding sag	
	adjusters.	
251564	132kV Composite Tension Insulator Assembly for Tower Lines. 120kN, based on (9 x 178mm) 1602mm spacing, 275kV Wet	1091010428 sht. 8
	Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 20mm ball/socket end fittings c/w all fittings from Earth End	
	Shackle to Live End Socket Tongue, including arcing horns to provide for Normal Arc Gap of 1175mm. Excluding sag adjusters.	

Low Duty Downleads (66/132kV Tower/Mast Lines)

Cat. No.	Purpose for Insulator assembly	Drawing Number
251526	66kV Composite Low Duty Insulator Downlead Assemblies. To include for both upright and inverted sets - 70kN SML, based on 2 x	1091010428 sht9
	(5 x 140mm) 700mm spacing, 140kV Wet Withstand, 325kV Dry Lightning Withstand, 1268mm min creep, 16mm ball/socket end	
	fittings supplied c/w all fittings from ball ended eye link to Socket Clevis, including arcing horns to provide for Approach Arc Gap	
	of 440mm.	
251525	132kV Composite Low Duty Insulator Downlead Assemblies. To include both upright and inverted sets - 70kN SML, based on, 2 x	1091010428 sht9
	(11 x 140mm) 1540mm spacing, 275kV Wet Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 16mm ball/socket	
	end fittings supplied c/w all fittings from ball ended eye link to Socket Clevis, including arcing horns to provide for Approach Arc	
	Gap of 1000mm.	

D	Document F	Reference: -	NPS/001/006	Document Type: -	Code of Pra	ctice		
	Version: -	4.0	Date of Issue: -	June 2024	Page	22	of	67

Composite Insulator String Assemblies – (132kV Tower Lines – L3 / L7 Construction)

Cat No.	Purpose for Insulator assembly	Drawing Number
251524	132kV Composite Tension Insulator Assembly – (Twin Lynx Tower Lines) - 120kN SML, based on 2 x (9 x 178mm) 1602mm spacing, 275kV Wet Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 20mm ball/socket end fittings c/w all fittings from earth end shackle to live end socket Tongue, including arcing horns to provide for Approach Arc Gap of 1000mm. Excluding sag adjusters	1091010428 sht10
251523	132kV Composite Tension Insulator Assembly – (Twin Lynx Tower Lines) - 120kN SML, based on 2 x (9 x 178mm) 1602mm spacing, 275kV Wet Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 20mm ball/socket end fittings c/w all fittings from earth end shackle to live end socket Tongue, including arcing horns to provide for Normal Arc Gap of 1175mm. Excluding sag adjusters	1091010428 sht10
251522	132kV Composite Suspension Insulator Assembly – (Twin Lynx or single large conductor Tower Line) 120kN SML, based on (11 x 171mm) 1881mm spacing, 275kV Wet Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 20mm ball/socket end fittings c/w all fittings from earth end shackle to live end socket clevis, including arcing horns to provide an Approach Arc Gap of 1000mm.	1091010428 sht. 11
251521	132kV Composite Suspension Insulator Assembly – (Twin Lynx or single large conductor Tower Line) 120kN SML, based on (11 x 171mm) 1881mm spacing, 275kV Wet Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 20mm ball/socket end fittings c/w all fittings from earth end shackle to live end socket clevis, including arcing horns to provide for Normal Arc Gap of 1175mm.	1091010428 sht. 11
251520	132kV Composite Low Duty Downlead Insulator Assembly – (Twin Lynx or single large conductor Tower Line) 120kN SML, based on (11 x 171mm) 1881mm spacing, 275kV Wet Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 20mm ball/socket end fittings c/w all fittings from ball ended eye link to Socket Clevis for both upright and inverted insulator assemblies, including arcing horns to provide for Approach Arc Gap of 1000mm.	1091010428 sht. 12
251519	132kV Composite Tension Insulator Assembly – (Single large Conductor 190kN) - 190kN SML, based on (9 x 178mm) 1602mm spacing, 275kV Wet Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 24mm ball/socket end fittings c/w all fittings from earth end shackle to live end socket Tongue, including arcing horns to provide for Approach Arc Gap of 1000mm. Excluding sag adjusters	1091010428 sht13
251565	132kV Composite Tension Insulator Assembly – (Single large Conductor 190kN) - 190kN SML, based on (9 x 178mm) 1602mm spacing, 275kV Wet Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 24mm ball/socket end fittings c/w all fittings from earth end shackle to live end socket Tongue, including arcing horns to provide for Normal Arc Gap of 1175mm. Excluding sag adjusters.	1091010428 sht13

Document F	Reference: -	NPS/001/006	Document Type: -	Code of Pra	ctice		
Version: -	4.0	Date of Issue: -	June 2024	Page	23	of	67

Glass and Porcelain Discs – as detailed in ENA TS 43-93 Fig. 5.6

Cat No.	Purpose for Insulator assembly	Drawing Number
250529	Glass Disk 254mm x 140mm, 70kN SML with 16mm Ball/Socket coupling	1091010484 Sht. 2
		and ENA TS 43-93 fig 14a
253476	Glass (Anti-Fog) Disc 254mm x 140mm, 70kN SML, with 16mm Ball/Socket Couplings	1091010485 sht. 3
		and ENA TS 43-93 fig 14b
253616	Porcelain Disc 285mm x 140mm, 70kN SML, Standard, Anti-Fog suspension with 16mm Ball/Socket coupling (66/132kv	1091010485 sht. 4 and
	lines)	and ENA TS 43-93 fig 14b
253584	Grey Porcelain Tension Disc 292mm x 178mm, 125kN SML with 20mm Ball/Socket coupling	1091010485 sht. 8
		and ENA TS 43-93 fig 14c
253438	Glass Tension Disc 280mm x 178mm, 125kN SML, with 20mm Ball/Socket couplings (66/132kv lines)	1091010485 sht. 2
216911	Brown Porcelain Disc 318mm x 171mm, 125kN SML, Low Duty suspension disc with 20mm Ball/Socket Couplings	Y707L0707
	(66/132kv lines)	
216820	Glass Tension Disc 305mm x 200mm, 190kN SML, (132kV Zebra or Rubas lines)	Y707L0703

Stay Insulators – All Voltages

Cat. No	System	Description	Drawing Number
	Voltage (kV)		
248232	0.24 to 20	Stay Insulator Porcelain designed in accordance with ENA TS 43-91 Type 1 (Brown)	ENA TS 43-91 Fig.3 Type 1
	Unearthed		or 1000439107 Sheet 1-Item
	All voltage		1.
	Earthed		
253743	33 to 66	Stay Insulator Porcelain designed in accordance with ENA TS 43-91 Type 2 (Brown)	ENA TS 43-91 Fig.3 Type 2
	Unearthed		or 1000439107 Sheet 1-Item 2
346596	66kV	66kV Composite Tension Stay Insulator (Unearthed Supports), 120kN SML, based on 1610mm long,	1091010372 sht2. Item 2
	Unearthed	140kV Wet Withstand, 325kV Dry Lightning Withstand, 1268mm min creep, 20mm ball/socket end	
		fittings supplied c/w all fittings from the earthed end 90° Shackle to the live end shackle including	
		arcing horns as shown on drawing 1091010372 sht2.	
251547	132kV	66kV Composite Tension Stay Insulator (Unearthed Supports), 120kN SML, based on 890mm long,	1091010372 sht 2, Item 1
	Unearthed	275kV Wet Withstand, 650kV Dry Lightning Withstand, 2538mm min creep, 20mm ball/socket end	
		fittings supplied c/w all fittings from the earthed end 90° Shackle to the live end shackle including	
		arcing horns as shown on drawing 1091010372 sht2.	

Document F	Reference: -	NPS/001/006	Document Type: -	Code of Pra	ctice		
Version: -	4.0	Date of Issue: -	June 2024	Page	24	of	67

Low Voltage Line and Service Insulators

Cat. No	Description	Drawing Number
253917	Low Voltage Reel Insulator, Brown Porcelain or MDPE Material	1000439304 or ENA TS 43-93 Fig.16
253866	Low Voltage Coach Screw Service Insulator, Brown Porcelain or MDPE Material	1000439305 or ENA TS 43-93 Fig. 17

Triggered Spark Gap

Cat. No	System Voltage (kV)	Triggered Gap (mm)	Main Arc Gap (mm)	Drawing Number
242471	11	3	25	1091010603 Sht. 1
242537	20 and 33	10	35 - 48	1091010603 Sht. 2

Documen	t Reference: -	NPS/001/006	Document Type: -	Code of Pra	ctice		
Version:	- 4.0	Date of Issue: -	June 2024	Page	25	of	67

Appendix 2 - Material Composition

Northern Powergrid Commodity Code	

Material Composition	Minimum % per weight	Supplier of Materials
Silicon Polymer		
Filler		
Additional Pigments		
Type of Glass Rod		

** Appendix 2 must be completed by all Suppliers **

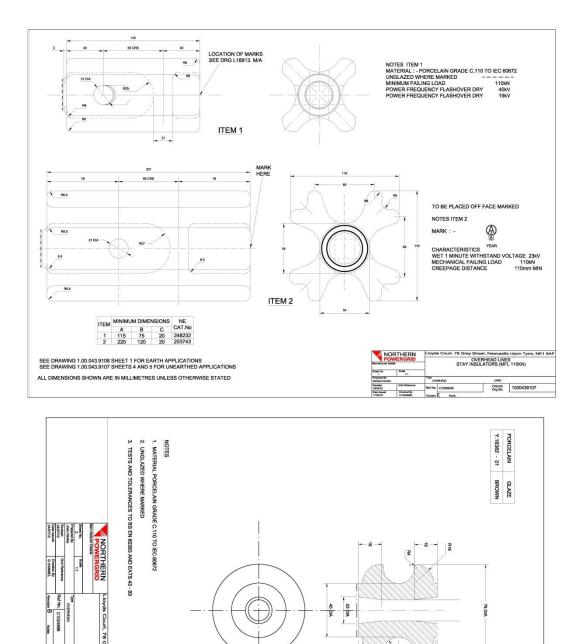
Document Reference: -		NPS/001/006	Document Type: -	Code of Practice			
Version: -	4.0	Date of Issue: -	June 2024	Page	26	of	67

Appendix 3 – Insulator Technical Details

Manufacturers Product Ref	
Northern Powergrid Commodity Code	
Insulator Type (Post / Tension / Suspension) etc	
Insulator Material	
Insulator Mechanical Rating (SML or SCL) kN	
Insulator Length (mm)	
Insulator Wet Power frequency Withstand (kV)	
Insulator Dry Lightning Impulse Withstand (kV)	
Insulator Dry Arcing distance (mm)	
Insulator Creepage distance (mm)	
Post or Rod Insulator Core Diameter (mm)	
Insulator Colour	
No of sheds	
Insulator Ball/Socket Coupling Size (mm)	
Insulator Weight (kg)	
Manufacturing Location	

The above schedule shall be completed for each insulator being supplied

Document Reference:	- NPS/001/006	Document Type: -	Code of Pra			
Version: - 4.0	Date of Issue: -	June 2024	Page	27	of	67


Appendix 4 – Typical Insulator Drawings

LARGE GROOVE)

Tyne, NE1 6AF

LINES Historic Drg.No.

1000439304

3

R12.

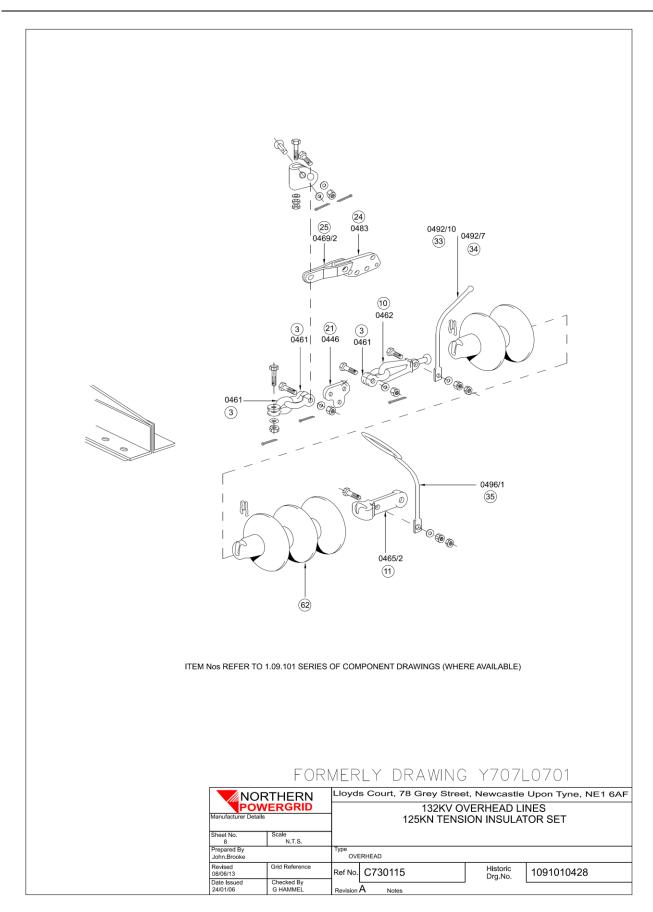
11

COMMODITY CODE 253917

	Reference: -	NPS/001/006	Document Type: -		
ersion: -	4.0	Date of Issue: -	June 2024	Page	28 of 6
	D	0	σ	>	
<u>≥</u> ∞	∃0 Ø ⊑	z			
ECI	MULA	NOTES			_
NS N	HERE HERE	. 🗵 .			
SHO AFT	UNGLAZED WHERE MARK SANDED WHERE MARKED COACHSCREW ITEM 2 FIX ITEM 1 WITH LEAD	<u> </u>			
SPECIFICATION APPLIED ESI 43 - 53 ALL DIMENSIONS SHOWN ARE IN MILLIMETRES UNLESS OTHERWISE STATED	UNGLAZED WHERE MARKED	<u>≁</u> ii →			
	U U				n
4 MILL					
MET	ISUL		MN NI	ω	N
RES					
UNLE					
SS ●					
	I				
WISE		× · · · · · · · · · · · · · · · · · · ·	2.5		
STA				75.5	
TE					ω
		•		2	
		S3.5	5		
Oot Rev Pra	She		57 UN		` ⊥
Prepared By W7Brig Revised Date Issued 09/02/2024	nufoctur	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	2		
зу W7Br /202		*Y*	<u>_</u>		
4 Grid			GIMLET		
yy W7Brian.James Grid Reference Grid Reference		, -	7 OR		ר ⁴
			П	2 1 1 ITEM	
Docume Drowing Revision				15563	
Drawing No. C	• INSI loyds		<u> </u>		
C 11: Notes	G Call		1	1 1 N. FF	
1910	9KS 3229-				
ois 01 C1119104CF Notes				T TORCELA STEEL G	сл
rian, Jornes Document Details OVERHEAD STANDARDS Grid Reference Drowing No. C 1119104 CF Historic Ref No. Checked By Revision Notes	CREATED FROM ALLED INSULATORS LTD DRG NG 15563 CREATED FROM PDF DRAWING C318229 - PREPARED BY J.L.W CHECKED BY G.H. 3.3.05. NETHERN Lloyds Court, 78 Grey Street, Newcastle Upon Tyne VERGRID COACHSCREW INSULATOR				
OVERHE AD	BY J.L ISCRE			OF PARTS DESCI	
H Sto	V CH				
STANDARDS Historic Ref No. 100	Cast			VARTS DESCRIPTION SULATOR DRO VISED COACHS	ŝ
No.	e up TOR				
043	on T			EW SL	GUE
1000439305	3.05. yne,				06 28
5	ED INSULATORS LTD DRG No. 15663 DRAWING C318229 - PREPARED BY J.L.W CHECKED BY G.H. 3.3.05. Lloyds Court, 78 Grey Street, Newcastle Upon Tyne, NE1 6AF COACHSCREW INSULATOR				6 CATALOGUE No 253866
<u>a</u> ,	6AF	I			
		0	œ	₽	

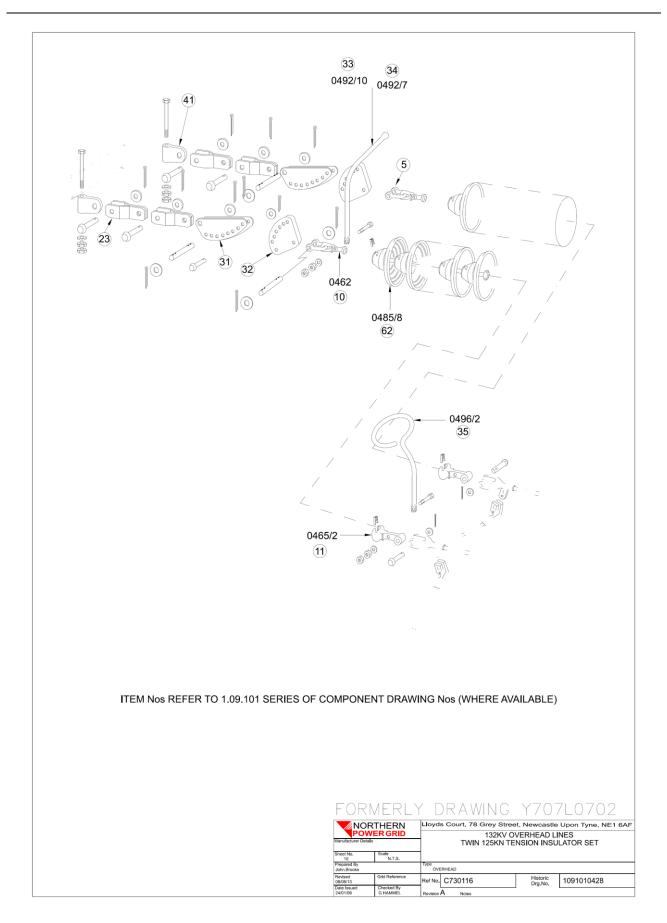
Information Classification – PUBLIC CAUTION! - This document may be out of date if printed

Document F	Reference: -	NPS/001/006	Document Type: -	- Code of Practice					
Version: -	4.0	Date of Issue: -	June 2024	Page	29	of	67		

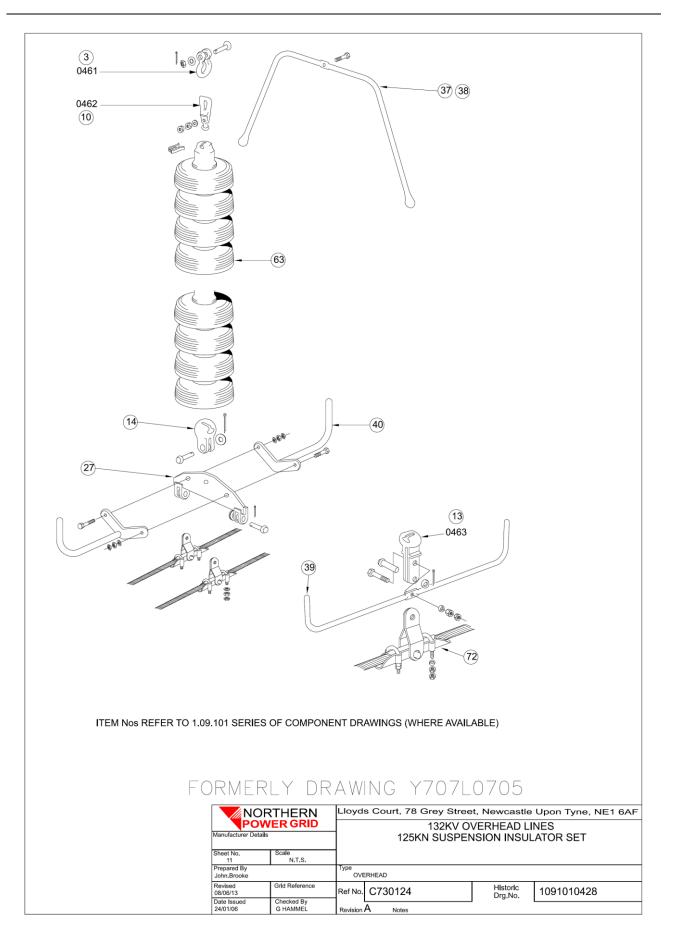

	7 27.08.10 1	6 43.41.9B.50 1	5 43.41.9B.2A 1	4 24.91.40 1	3 FA/S.4117 1	2 21.22.90 1	1 27.32.10 1	ITEM NO PART NO NO OFF		
	GAI VANISED SHACKI E REF 28/29A	ARCING RING GALVANISED	ARCING RING GALVANISED	SOCKET TONGUE GALVANISED	POLYMER INSULATOR ASSEMBLY GREY	BALL EYE 90 DEGREE GALVANISED	SHACKLE 90 DEGREE GALVANISED	F DESCRIPTION	TEM 1 = 1610mm (3) (3) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	8
	DFS	D.F.S.	D.F.S.	D.F.S.	POLYMER	D.F.S.	D.F.S.	MATERIAL	ITEM 1 = 1610mm ITEM 2 = 890mm ITEM 1 ITEM 1	KV REDUC
Date Issued	Revised 06/06/13	Prepared By John.Brooke	Sheet No.	Manufacturer Details				,	390mm 190mm ITEM 1 = 1120mm ITEM 2 = 530mm	ED LENG
Checked By	Grid Reference		Scale	POWERGRID	DRTHERN			BALL AND		66KV REDUCED LENGTH COMPOSITE ST
Daulainn F Notes	Ref No. C318321	Type OVERHEAD	(120KN)66KV AND 132KV COMPOSITE	INSULATOR	Lloyds Court, 78 Grey Street, Newcastle Upon Tyne, NE1 6AF			BALL AND SOCKET COUPLING TO IEC 60120 / 20		66KV REDUCED LENGTH COMPOSITE STAY INSULATOR
LIQ.INO.	Historic	LINES	AND 132K	R STAY ASSEMBLY	et, Newcastle			EC 60120 / 2	T	R ITEM 2 CAT. No. 346596
	1091010372	3	V COMP	SEMBLY	Upon T			20	$\mathbf{(r)}$	CAT. No

Document	Reference: -	NPS/001	/006		D	ocument Type:	- Code	of Pra	ctice		
Version: -	4.0			of Issue: -		ne 2024		Page	30	of	6
								~			
				Netton without		\frown		94)			
				10 000		93		NO	0		
						Το	0		0		
						00	0				
		(8)		$\left(\mathbf{J}\right)$							
		0445		\bigcirc							
								9	(1)		
					\sum	(2)	Re	1	- 0443	3	
		_	503	(D)		0446			UTI		
	0489 / 1 37 0489 / 2			g og) @		Y				
38	0489 / 2	[[R	- 40						
	$\langle \rangle$	/	/	-0		8					
	$\langle \rangle$				Ì						
	//			77							
						(61)					
	0										
					Ž						
			T		1	Ω					
							448 16				
	0495			A	0						
	(39)										
	\bigcirc	M		607	a.						
				0	- CO-G	ð					
		\bigcirc		AA		0498					
				apor		72					
			19 G	A C		-					
	ITEM NoS REF (WHERE AVAIL		1 SERIE	ES OF COMP	ONEN	T DRAWINGS					
				FORME	RLY	DRAWING Y707L07	704				
			NOR	THERN		s Court, 78 Grey Stree	et, Newcastl		yne, NE	1 6AF	
		Mar	POWE	RGRID	-	132KV C 70KN SUSPEN	VERHEAD L	INES LATOR SI	ET		
			eet No. 7	Scale N.T.S.	Type						
		Rev	pared By nn.Brooke vised	Grid Reference		C729204	Historic	109101	0428		
		08/	06/13 te Issued 01/06	Checked By	Ref No.		Drg.No.	109101	0420		

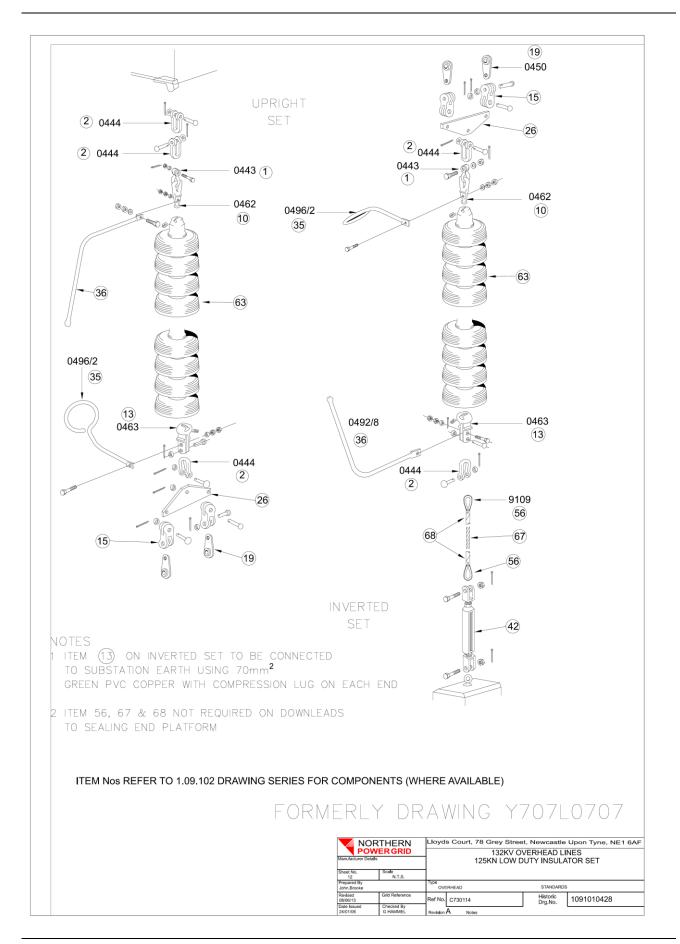
Document Reference:	NPS/001/006	Document Type: -	Code of Practice			
Version: - 4.0	Date of Issue: -	June 2024	Page	31	of	67



Document Reference: -		NPS/001/006 Document Type: - Code of Practic		ctice			
Version: - 4.0		Date of Issue: -	June 2024	Page	32	of	67

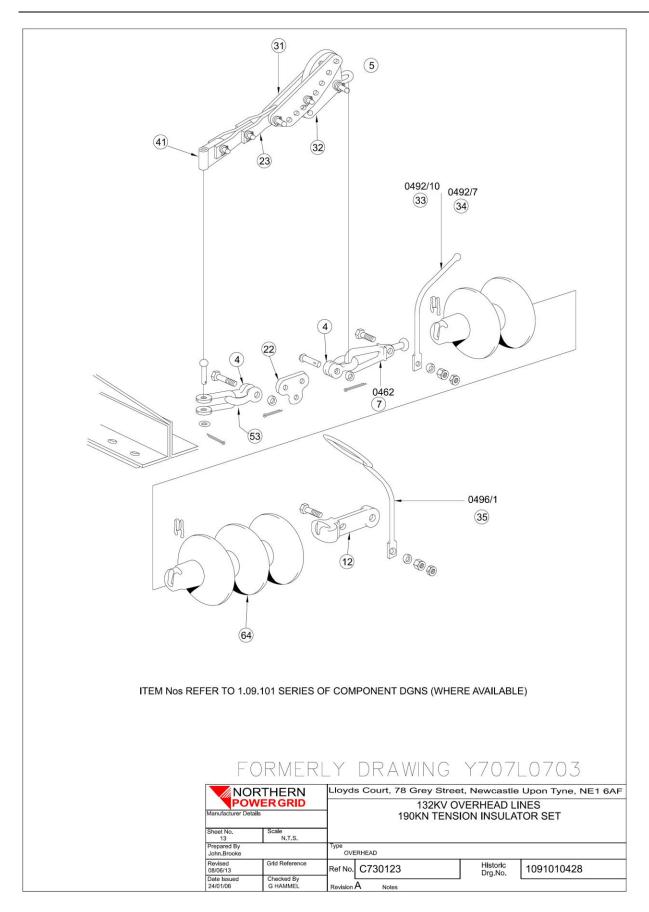

Document Reference: -		NPS/001/006	Document Type: -	Code of Pra			
Version: -	4.0	Date of Issue: -	June 2024	Page	33	of	67

Information Classification – PUBLIC CAUTION! - This document may be out of date if printed



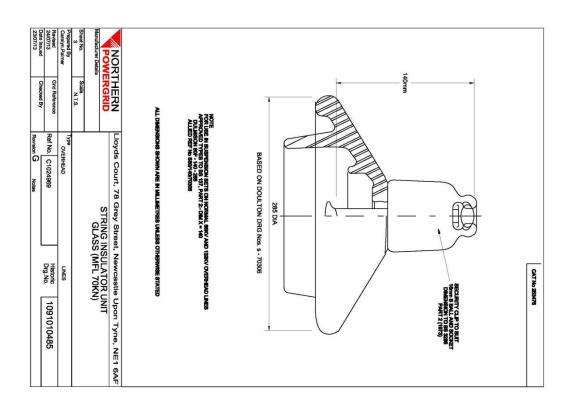
Document Reference: -		NPS/001/006	Document Type: -	Code of Practice			
Version: -	4.0	Date of Issue: -	June 2024	Page	34	of	67

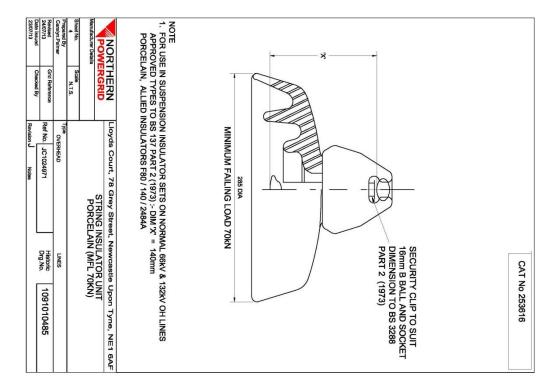
Document Reference: -		NPS/001/006	Document Type: -	Code of Practice			
Version: -	4.0	Date of Issue: -	June 2024	Page	35	of	67


Information Classification – PUBLIC CAUTION! - This document may be out of date if printed

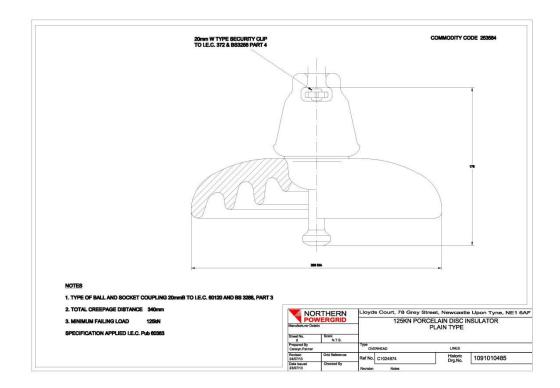
	Document Reference: -	NPS/001/006	Document Type: -	Code of Practice			
Version: -4.0Date of Issue: -June 2024Page36of	Version: - 4.0	Date of Issue: -	June 2024	Page	36	of	67

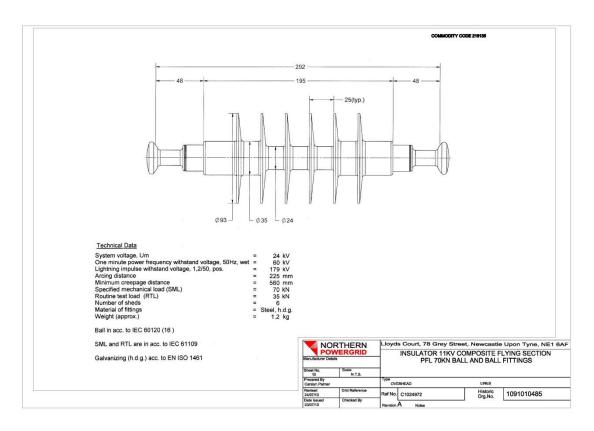
Document R	eference: -	NPS/001/006	Document Type: -	Code of Practice			
Version: -	4.0	Date of Issue: -	June 2024	Page	37	of	67

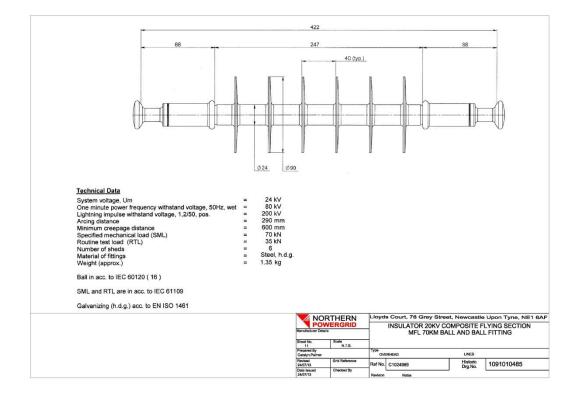


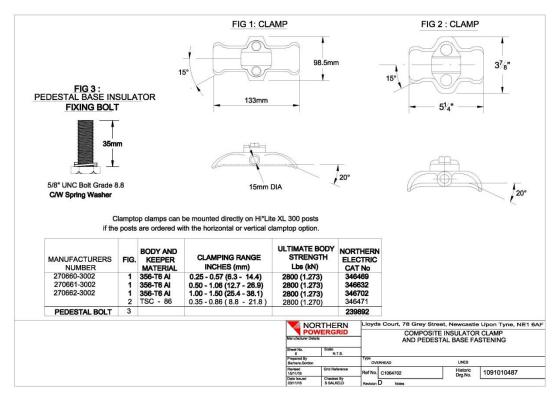


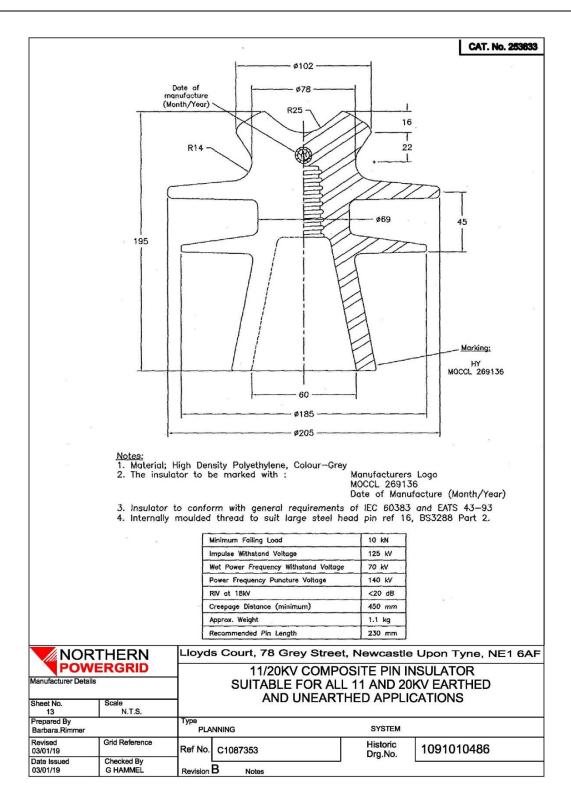
rsion: 4.0 Date of Issue: June 2024 Page 38 of OULWANSED MALLEABLE CAST RON COPTION: Source To Meximite Source S	ocumont [Poforonco:	NPS/001/006	Document Type: -	Code of Prac	tico	
ALUMENSION MAILEABLE CAST FROM CAP BOLITON BISOCRIT DUBLICAST FOOL CAP INFORM BISOCRIT DUBLICAST FOOL CAP INFORM BISOCRIT DUBLICAST FOOL CAP INFORM BISOCRIT DUBLICAST FOOL CAP INFORMED FORCED STEEL PR OCLUMINSED FORCED STEEL PR OCLUM						- T T	
<image/>		4.0		June 2024	i uge	50 01	
<form></form>		16mm 'B' B.S. 3288	SOCKET DIMENSIONS TO 9, PART 2. COMPLETE WITH				
Image: Description of the second of the sec			16mm BALL DIMENSIONS TO			140	
NOTES 1. FOR USE IN NORMAL SITUATIONS ON 11kV, 20kV, 33kV AND 66kV TENSION OVERHEAD LINES 2. APPROVED TYPES TO BS 137, PART 2. GLASS ALLIED T70 / 140 / 70309 GLASS DULMISION 80N - 140 - 255 (DRG No DK,10001) 3. SUPERCEDES DOULTON P70G / 140			-	255			
GLASS DULMISION 80N - 140 - 255 (DRG No DK.10001) 3. SUPERCEDES DOULTON P70G / 140 ALL DIMENSIONS SHOWN ARE IN MILLIMETRES UNLESS OTHERWISE STATED VIENDEN Image: Street Neurosatile Upon Tyne, NE1 6AF VIENDEN STRING INSULATOR UNIT (140MM SPACING) GLASS ME1 70KM VIENDEN Image: Street Neurosatile Upon Tyne, NE1 6AF	;	1. FOR USE IN NOF	MAL SITUATIONS ON 11kV, 20kV, 33kV AN	D 66kV TENSION OVERHEAD LINE			
ALL DIMENSIONS SHOWN ARE IN MILLIMETRES UNLESS OTHERWISE STATED View Not State Loyds Court, 78 Grey Street, Newcastle Upon Tyne, NE 1 8AF View Not State STRING INSULATOR UNIT (140MM SPACING) GLASS MET / 70K) View Not State View Not State View Not State GLASS MET / 70K) View Not State View Not State	:	2. APPROVED TYP			01)		
NORTHERN POWERGRID Lloyds Court, 78 Grey Street, Newcastle Upon Tyne, NE1 6AF Mandadure Details Strein No. 11 Strein No. 11 Sheet No. Candyn/Patrier Street No. 11 GLASS MFL 70KN Revised 2MMID and 2MMID and Grid Reference 2MMID and No Revised 2MMID and Grid Reference 2MMID and Ref No. Course at the Course at the Cou	:	3. SUPERCEDES	DOULTON P70G	/ 140			
NORTHERN POWERGRID Lloyds Court, 78 Grey Street, Newcastle Upon Tyne, NE1 6AF Mandadure Details Strein No. 11 Strein No. 11 Sheet No. Candyn/Patrier Street No. 11 GLASS MFL 70KN Revised 2MMID and 2MMID and Grid Reference 2MMID and No Revised 2MMID and Grid Reference 2MMID and Ref No. Course at the Course at the Cou							
PowerGRID Strains insultator Manufacture Details Italian Sheet No. Scale 2 t:1 Prepared By t:1 Category Patient Type Revised Glds Reference Zetrianty Patient Glds Reference Zetrianty Patient Concept the State Manufacture Details Ref No. Constant State Dig 1010484	ALL DIMENSI	ONS SHOWN ARE IN M			Bray Street Nous-H-1		
Strate 2x Strate 2x <thstrate 2x<="" th=""> <thstrate 2x<="" th=""> <ths< td=""><td></td><td></td><td>Manut</td><td>POWERGRID acturer Details</td><td>STRING INSULATOR UNIT (140MM SPACING)</td><td></td><td></td></ths<></thstrate></thstrate>			Manut	POWERGRID acturer Details	STRING INSULATOR UNIT (140MM SPACING)		
Revised 2407/13 Grill Reterence Ref No. C1025007 Historic Drg.No. 1091010484			Prepa	red By Type			
24/01/13 Checked by Revision G Notes			Revis 24/07	d Grid Reference Ref No. C1025007	Historic Drg.No. 109	1010484	

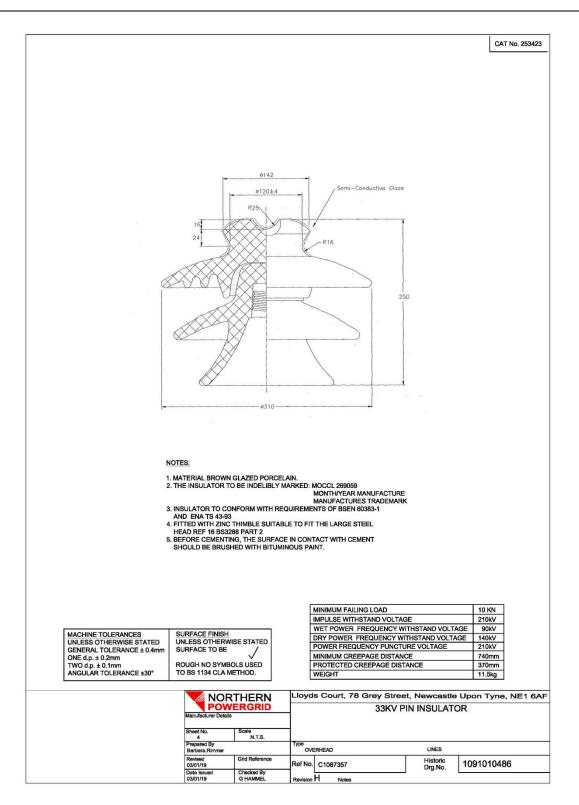

Document Refere	ence: -	NPS/001/006	Document Type: -				
Version: - 4.0		Date of Issue: -	June 2024	Page	39	of	67




Document R	eference: -	NPS/001/006	Document Type: -	Code of Practice			
Version: -	4.0	Date of Issue: -	June 2024	Page	40	of	67




Document Referen	nce: - NPS/001/006	Document Type: -	Code of Pra	ctice		
Version: - 4.0	Date of Issue:	- June 2024	Page	41	of	67



Document Reference: -	NPS/001/006	Document Type: -	Code of Practice			
Version: - 4.0	Date of Issue: -	June 2024	Page	42	of	67

Document F	Reference: -	NPS/001/006	Document Type: -				
Version: -	4.0	Date of Issue: -	June 2024	Page	43	of	67

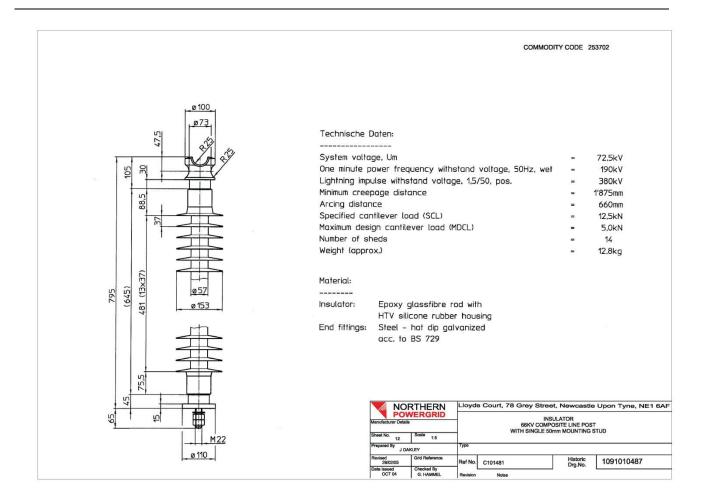
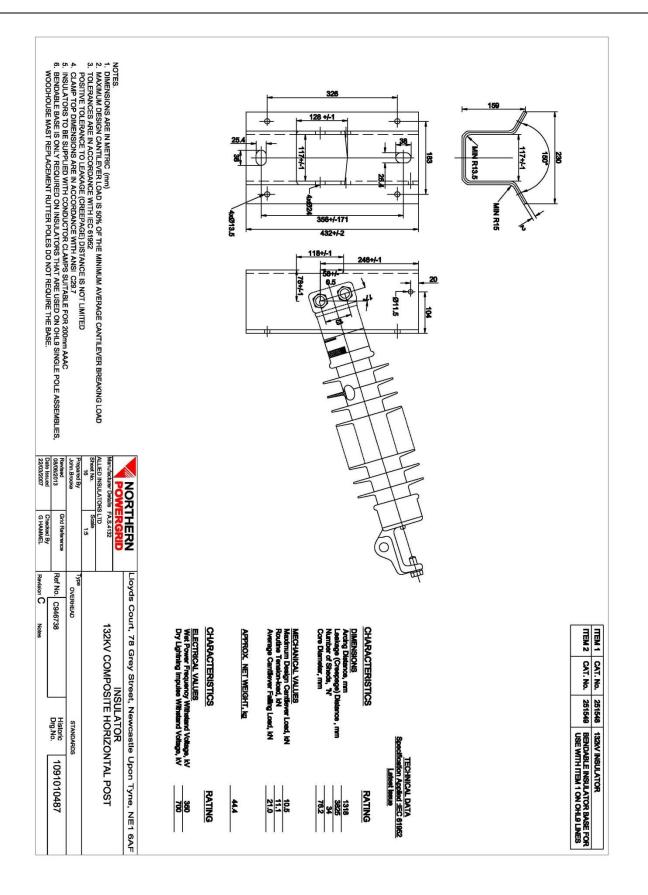
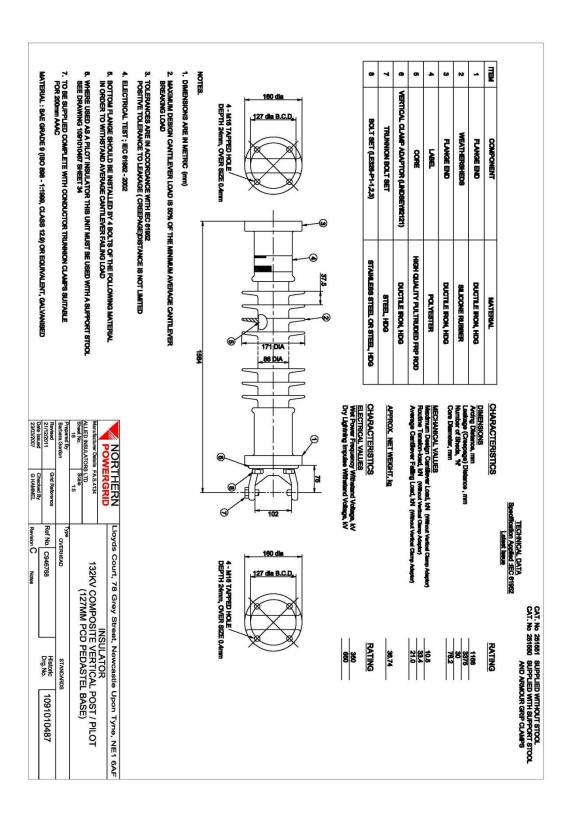


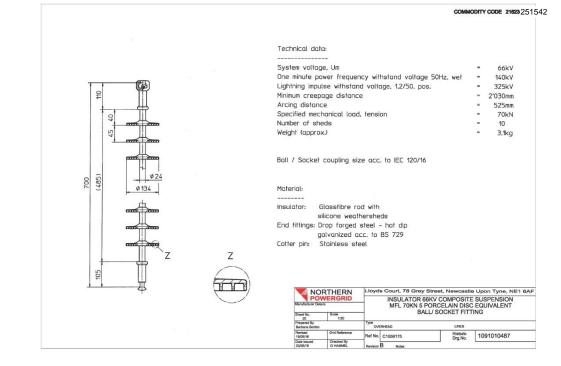
FIG.1: CLAMP FIG.3: FEG.3: FIG.3: FIG.3: FIG.1: CLAMP FIXING BOLT FIG.1: CLAMP FIXING BOLT FIG.1: CLAMP FIG.1: CLAMP	cument Reference:	- NPS/001/006	Document Type: -	Code of Practice
FIG 1: CLAMP FIXING BOLT FIXING BOLT TWUC Bolt Grade 8.8 V Spring Washer UNC Clamptop clamps can be mounted directly on Hi"Lite XL 300 posts if the posts are ordered with the horizontal or vertical clamptop option. NUHBER NUMBER NUMBER NUMBER NUMBER NUMBER STREENGAL 1 356-T6 Al 1 005- 1.50 (25.4 - 38.1) 2 TSC - 88 0 35 - 0.68 (8.8 - 21.8) 2800 (1.273) 3464 1.00 - 1.50 (25.4 - 38.1) 2800 (1.273) 3467 2300 EDESTAL BOLT STREENG NUCHES (mm) NCHES (mm) NCHES (mm) NCHES (mm) STREENG Lbs (kN) 2800 (1.273) 3467 2800 (1.273) 3467 2800 (1.273) 3467 2300 EDESTAL BOLT STREENG NCHES (mm) Streenger Lbs (kN) 2800 (1.273) 3467 2300 EDESTAL BOLT STREENG Streenger S	ersion: - 4.0	Date of Issue: -	June 2024	Page 44 of 67
FIG 1: CLAMP 15° 48.5mm 133mm 498.5mm 133mm 400 400000 13mm DIA 400 15mm DIA 400		Clamptop d: if the posts are MANUFACTURERS FIG. K NUMBER FIG. K 270660-3002 1 356 270662-3002 1 356 270662-3002 2 TS0 270662-3002 2 TS0 2 TS0	35mm 35mm 5/8" UNC Bolt Grade 8.8 C/W Spring Washer	FIG 3 : PEDESTAL BASE INSULATOR FIXING BOLT
A Somm 3.5mm 3.5mm 3.5mm 3.5mm 4.20° 4.20° 4.20° 4.2398 5.34667 3.4664 3.4667 3.4677 3.4777 3.4777 3.4777 3.4777 3.4777 3.47777 3.477777 3.4777777777777777777777777777777777777	Manufacturer Deta Sheet No. 6 Population Barbara.Gordon Refuted 15/11/16 Date Issued 03/11/16	Iamps can be mounted directly on Hi*Lite XL 300 posts ordered with the horizontal or vertical clamptop option DDY AND CLAMPING RANGE CLAMPING RANGE ULTIMATE E ATERIAL INCHES (mm) 6-T6 AI 0.25 - 0.57 (6.3 - 14.4) 2800 (1.27) 2800 (1.27) 6-T6 AI 0.50 - 1.06 (12.7 - 26.9) 1.00 - 1.50 (25.4 - 38.1) 2800 (1.27) 2. 86 0.35 - 0.86 (8.8 - 21.8)	15mm DIA	FIG 1: CLAMP
	Scale N.T.S. Girld Reference Checket By SALKELD Revision D	H H H H H H H H H H H H H H H H H H H	/ /20°	

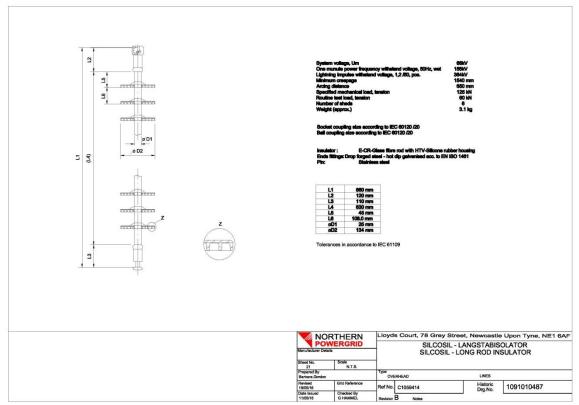


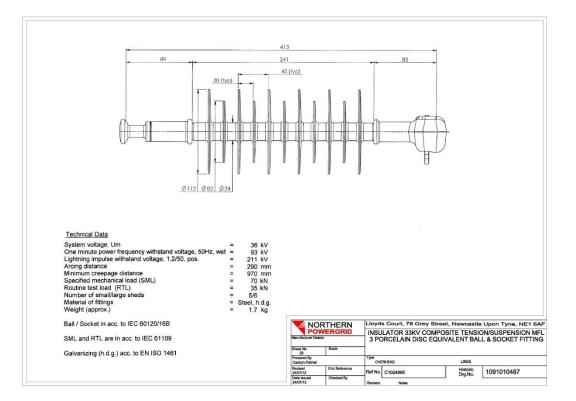
Document Reference	- NPS/001/006	Document Type: -				
Version: - 4.0	Date of Issue: -	June 2024	Page	45	of	67

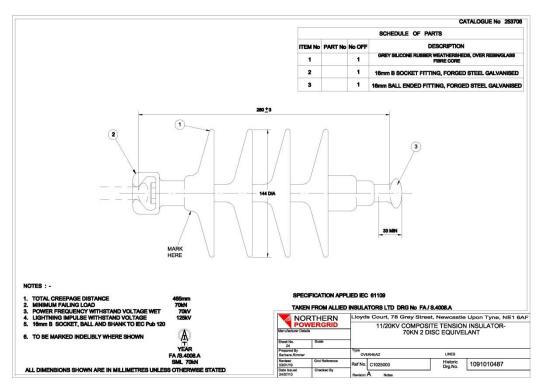


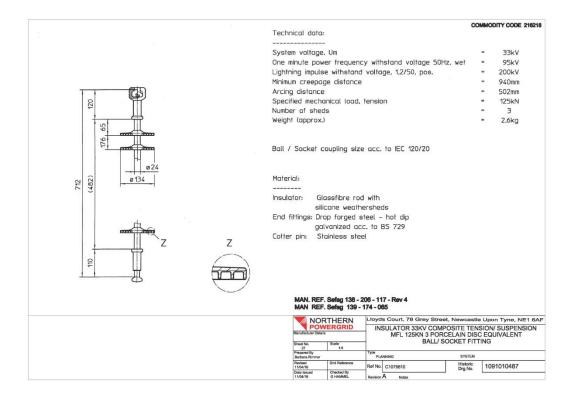
Document R	eference: -	NPS/001/006	Document Type: -				
Version: -	4.0	Date of Issue: -	June 2024	Page	46	of	67

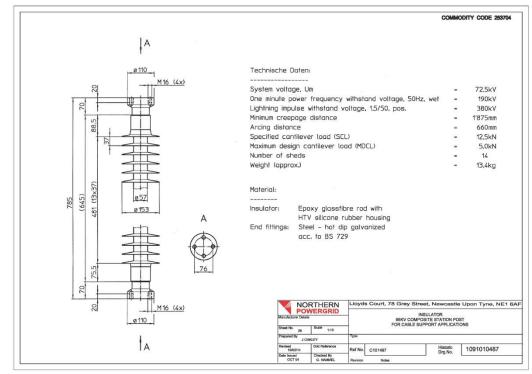


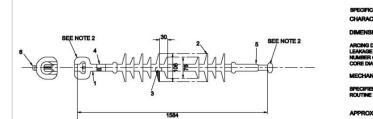

Document Reference: -	NPS/001/006	Document Type: -	- Code of Practice			
Version: - 4.0	Date of Issue: -	June 2024	Page	47	of	67


Document Re	eference: -	NPS/001/006	Document Type: -				
Version: -	4.0	Date of Issue: -	June 2024	Page	48	of	67

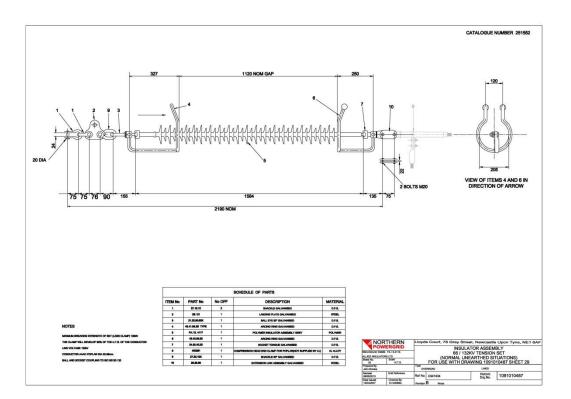



Document Referenc	e: - NPS/001/006	Document Type: - Code of Prac		ctice		
Version: - 4.0	Date of Issue: -	June 2024	Page	49	of	67



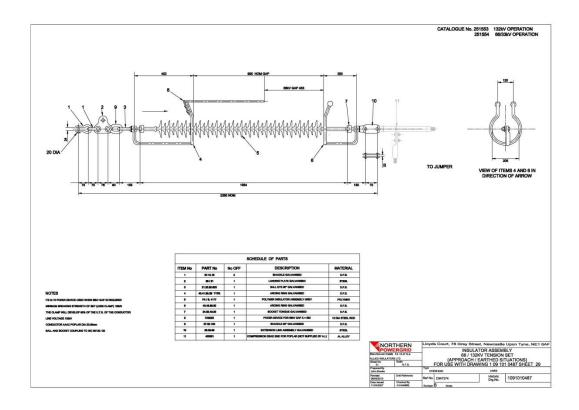

Document Reference: - NPS/001/006 Document Type:		Document Type: -	Code of Pra	ctice			
Version: -	4.0	Date of Issue: -	June 2024	Page	50	of	67

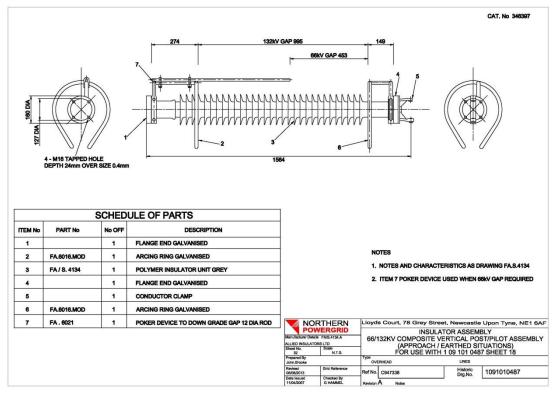
Document Referen	nce: - NPS/001	/006	Document Type: -	Code of Practice			
Version: - 4.0		Date of Issue: -	June 2024	Page	51	of	67

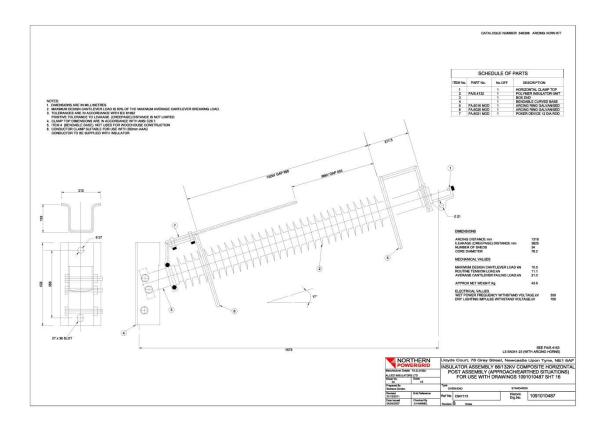

ITEM	COMPONENTS	MATERIAL	REQD
1	SOCKET FITTING	HIGH GRADE F.S. OR D.I. HDG	1
2	WEATHERSHEDS	SILICONE RUBBER	1
3	CORE	HIGH QUALITY PULTRUDED FRP ROD	1
4	LABEL	POLYESTER	1
5	BALL FITTING	HIGH GRADE FORGED STEEL, HDG	1
6	SPLIT PIN	STAINLESS STEEL	1

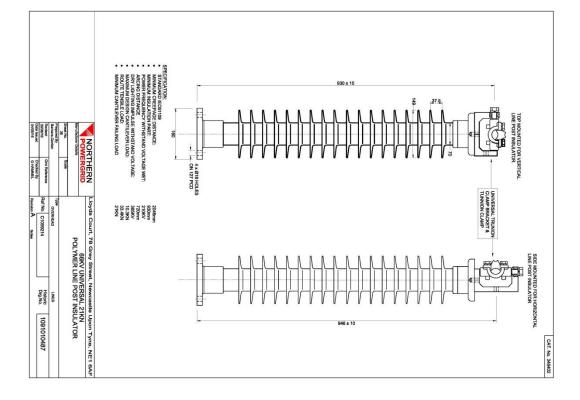
TECHNICAL DATA SPECIFICATION APPLIED : IEC81109. LATEST ISSUE	
CHARACTERISTICS	RATING
DIMENSIONS	
ARCING DISTANCE mm	1348
LEAKAGE (CREEPAGE) DISTANCE mm	3702
NUMBER OF SHEDS 'N'	43
CORE DIAMETER mm	17
MECHANICAL VALUES	
SPECIFIED MECHANICAL LOAD IN	125
ROUTINE TENSION LOAD IN	63
APPROX. NET WEIGHT. kg	6.0
ELECTRICAL VALUES	
WET POWER FREQUENCY WITHSTAND VOLTAGE KV	425
DRY LIGHTNING IMPULSE WITHSTAND VOLTAGE KV	765

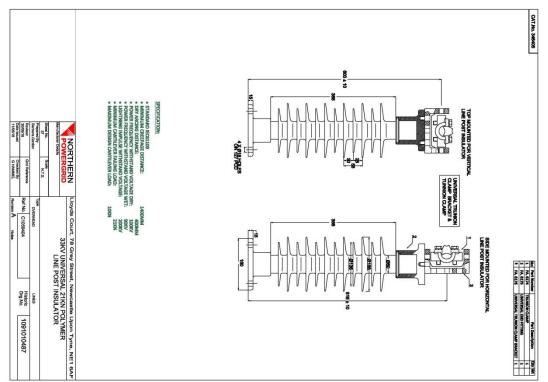
TES

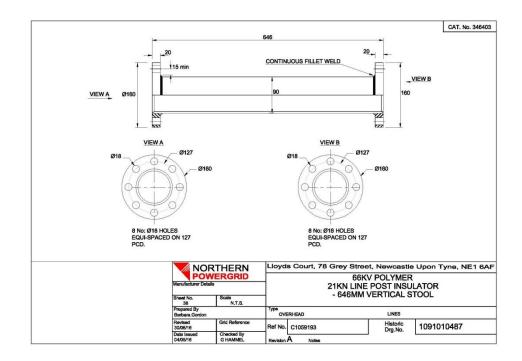

I. DIMENSIONS ARE IN MILLIMETRES 2. SOCKET AND BALL COUPLINGS CONFORM TO GAUGES FOR IEC PUB80120 / 20 3. TOLERANCES ARE IN ACCORDANCE WITH IEC 61109, LATEST ISSUE.

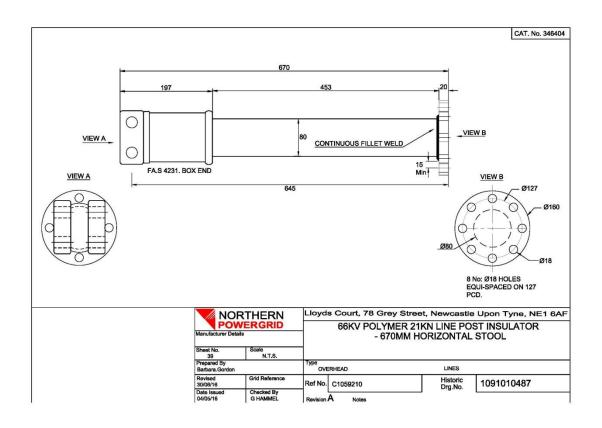

NOR	THERN	Lloyd	s Court, 78 Grey Stree	t, Newcastle	Upon Tyne, NE1 6AF
POW	ERGRID		IN	SULATOR	
Manufacturer Details			132KV COMPC		ON / STAY
ALLIED INSULATOR			(120KN WITH 20MM	BALL / SOC	KET COLIPLING)
Sheet No. 29	Scale 1:5	1	(120101 1111 201010	DALL / 000	RET COOT EINO)
Prepared By John.Brooke		Type OVE	RHEAD	LINES	
Revised 08/06/2013	Grid Reference	Ref No.	C947326	Historic Drg.No.	1091010487
Date Issued 11/04/2007	Checked By G HAMMEL	Revision	A Notes	Digito.	

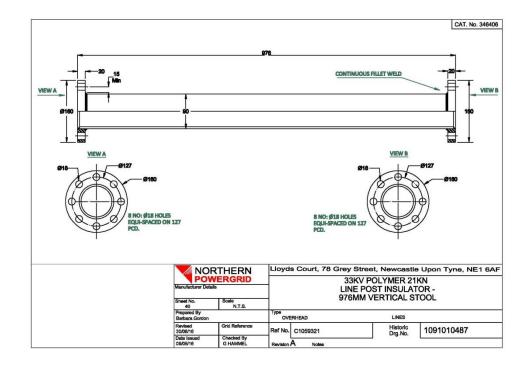

Document Reference: - NPS		NPS/001/006	Document Type: -	Code of Practice			
Version: -	4.0	Date of Issue: -	June 2024	Page	52	of	67

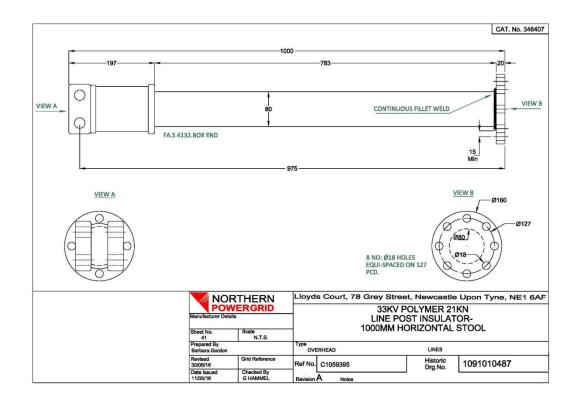

Document R	eference: - NPS/001/006 Document Type: - Code of		Code of Pra	ctice			
Version: -	4.0	Date of Issue: -	June 2024	Page	53	of	67

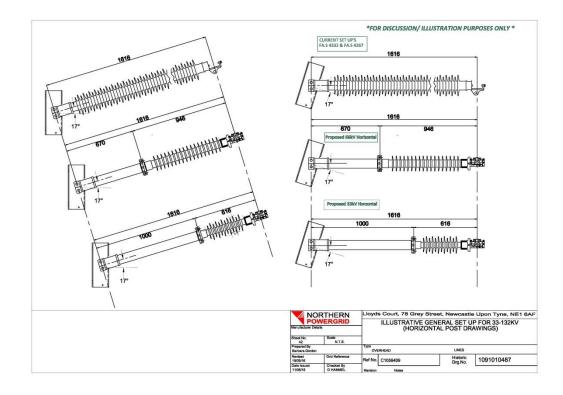


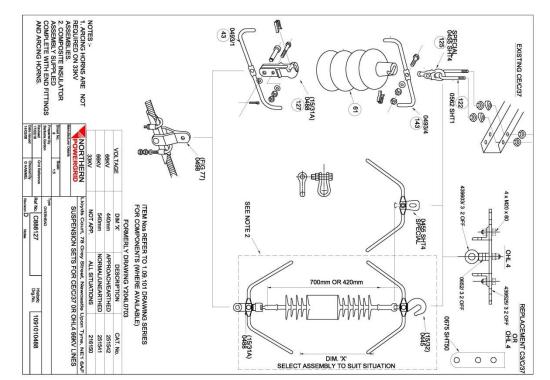

Document Re	eference: -	NPS/001/006	Document Type: -	- Code of Practice			
Version: - 4	4.0	Date of Issue: -	June 2024	Page	54	of	67



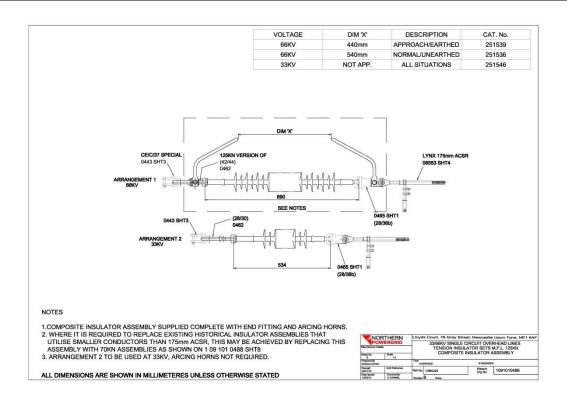

Document Reference: -	NPS/001/006	Document Type: -	Code of Practice			
Version: - 4.0	Date of Issue: -	June 2024	Page	55	of	67



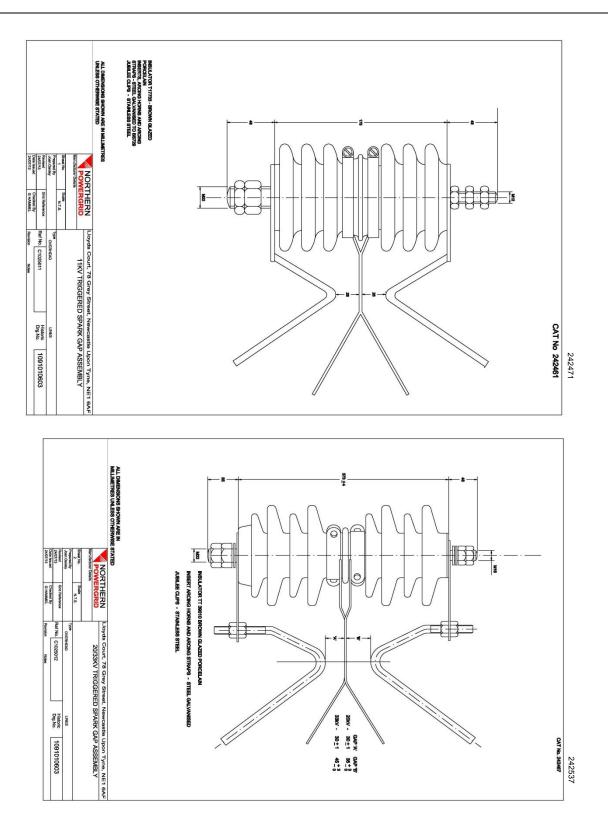

Document Reference: -	NPS/001/006	Document Type: -	e: - Code of Practice			
Version: - 4.0	Date of Issue: -	June 2024	Page	56	of	67



Document R	Document Reference: - NPS/001/006 Document Type: - Co		Code of Pra	ctice			
Version: -	4.0	Date of Issue: -	June 2024	Page	57	of	67



ocument Refere	nce: -	NPS	/001/006		Docu	ment Type: -	Code	of Pra	ctice		
ersion: - 4.0			Date of I	ssue: -	June			Page	58	of	67
1 09 123 1192 1 09 123 1192 5. STANDARD INSULATOR ASSEMBLY COMPRISES 70KN BALL/SOCKET INSULATOR C/W SOCKET CLEVIS AND BALL ENDED HOOK WHEN ARRANGEMENTS 1 AND 2 ARE USED 6. REPLACE STANDARD SOCKET CLEVIS FITTING (0448) WITH A SOCKET TONGUE FITTING (0449) RE-USING THE ARCING HORN PROVIDED WITH THE ASSEMBLY.	4. THESE FITTINGS VIIIT ABOVE. ON THE FOLLOWING WOOD POLE STRUCTURES	9. CCL PIEAPRESS DESIGN. 3. LARGE RADIUS SOCKET THIMBLES SHALL BE USED ON AAAC CONDUCTORS 100mm & ABOVE	DRAWING SERIES FO SLEVIS ENDED CLAMF 30 FOR 150mm sq (37/2 175mm sq (37/2 175mm sq (37/2	(15/32)	SEE NOTE 4		(15/85) 0458 (15/82) (15/25) 0447				
	66KV 33KV	VOLTAGE 66KV			0448 0448	DIM 'X' SEE NOTE 2 SELECT ASSEMBLY TO SUIT SITUATION		SEE NOTE 6	(15/35) 0449		
ALL DIMENSIONS ARE SI MORTHERN Montacium Vender Montacium Vende	540mm NOT APP.	DIM 'X' 440mm	-				(15/83)		(15/83) 0456	SEE NOTE 6	
	NORMAL/UNEARTHED ALL SITUATIONS	DESCRIPTION APPROACH/EARTHED			ARRANGEMENT 4 EYE ENDED SUITABLE FOR LYNX OR WOLF 0420	SEE NOTE 3	0426 SHT3 ARRANGEMENT 2	0102 SHT9 ARRANGEMENT 1 (15/61)	KET ENDED		
IN IN MILLIMETERES UNLESS OTHERWISE STATED Libyds Court, 78 Grey Street, Newcastle Upon Tyne, NE1 6AF 66KV SINGLE CIRCUIT OVERHEAD LINES TENSION INSULATOR SETS M.F.L. 70KN COMPOSITE INSULATOR ASSEMBLY Tradic George Statustic Statustics Rei No. Ceorge S	251560 216150	CAT. No. 251559			OR LYNX OR WOLF	EMENT 3	ENT 2	,			



Document Reference: -	NPS/001/006	Document Type: -	Code of Pra			
Version: - 4.0	Date of Issue: -	June 2024	Page	59	of	67

Document Referenc	e: - NPS/001/006	Document Type: -	Code of Pra	ctice		
Version: - 4.0	Date of Issue: -	June 2024	Page	60	of	67

Document Reference: - NPS/0		NPS/001/006	Document Type: -	Code of Practice				
Version: -	340	Date of Issue: -	June 2024	Page	61	of	67	

Appendix 5 - Self Certification Conformance Declaration

Line insulators manufactured in accordance with ENA TS 43-93 shall comply with the latest issues of the relevant international and British Standards.

This check sheet identifies the clauses in ENA TS 43-93 and the clauses of the aforementioned Standards relevant to line insulators for use on the Northern Powergrid distribution system.

The manufacturer shall declare conformance or otherwise, clause by clause, using the following levels of conformance declaration codes. Additionally, manufacturers shall provide test evidence for all completed tests.

Conformance declaration codes

N/A	Clause is not applicable/ appropriate to the product
CS1	The product conforms fully with the requirements of this clause
CS2	The product conforms partially with the requirements of this clause
CS3	The product does not conform to the requirements of this clause
CS4	The product does not currently conform to the requirements of this clause, but
	the manufacturer proposes to modify and test the product in order to conform.

Instructions for Completion

When Cs1 code is entered then details of how

compliance is achieved shall be provided in the Remarks column. This shall include details of type tests, where appropriate/applicable.

Supplier/Manufacturer:	Supplier/Manufacturer:					
Product Reference:						
Name:	Signature:	Date:				

Document Reference: - NPS/001/006		Document Type: -					
Version: -	340	Date of Issue: -	June 2024	Page	62	of	67

B1- General Clauses

	ENA TS 43-93			
Clause	Requirement	Conformance Code	Evidence (test reports)	Remarks
4.2	Porcelain or glass components			
	4.2.1 General			
	4.2.2 HV Insulators			
	4.2.3 LV Insulators			
4.3	Metal Components			
4.4	Composite Insulator materials			
	Composite Insulator End Fittings			
	Composite Insulator – Housing sheds			
	Composite Insulator - Tolerances			
4.5	Thermoplastic Insulators			
5	HV Line Insulators			
	5.1 General			
	5.2 11kV Insulators			
	5.2.1 11/20kV Pin Insulators			
	5.2.2 11/20kV Tension Insulators			
	5.3 33kV Insulators			
	5.3.1 33kV Pin Insulators			
	5.3.2 33kV Tension Insulators			
	5.3.3 33kV Line Post insulators			
	5.4 33-132kV Post Insulators			
	5.4.1 33-132kV Line Post Insulators			
	5.4.2 132kv Pilot Post Insulators			
	5.5 Insulator Clamp Tops			
	5.6 String Insulator Units			
	5.7 Composite String Insulator Units			
	5.7 Insulator Overvoltage protective Devices			
6.6	Radio interference voltage (RIV) requirements and			
	corona extinction voltage			
	6.6.1 General			

Document Reference: - NPS/001/006		Document Type: -					
Version: -	340	Date of Issue: -	June 2024	Page	63	of	67

	ENA TS 43-93			
Clause	Requirement	Conformance Code	Evidence (test reports)	Remarks
	6.6.2 Corona Extinction test			
	6.6.3 Single unit RIV test 132kV			
	6.6.4 Insulator Sets RIV test			
	6.6.5 Insulator sets RIV and corona test arrangement			
	6.6.6 Pin & Post insulators RIV Tests			
7	Pollution performance			
8	Mechanical Performance			
Annex A	Summary of Type and sample tests			

Document Reference: - NPS/001/006		Document Type: -					
Version: -	340	Date of Issue: -	June 2024	Page	64	of	67

B2- Clauses Specific to Porcelain and Glass Insulators

	IEC 60383- 1			ENA TS 43– 93			
Clause /	Requirement	Conformance	Clause	Requirement	Conformance	Evidence (test reports)	Remarks
Section		Code			Code		
Clause 5	Identification of insulators		4.1				
Clause	Test procedures for electrical		6	Test Requirements			
9 to 16	tests			6.1 General			
Clause				6.2 Design and Type Tests (Note			
17 to 31	Test procedures for mechanical			2)			
	and other tests (Note 1)			6.3 sample Tests			
				6.4 Routine Tests			
				6.7 Test Reports			
18	Electromechanical failing load		8.	Mechanical Performance			
	test,						
19							
	Mechanical failing load test						
Note 1: See	e also TS 43-93 clause 8						
Note 2: See	e also TS 43-93 Annex A						

IEC 60383- 2			ENA TS 43– 93				
Clause /	Requirement	Conformance	Clause	Requirement	Conformance	Evidence (test reports)	Remarks
Section		Code			Code		
9	Lightning Impulse Voltage Tests		6	Test Requirements			
				6.1 General			
10	Wet Power frequency Voltage			6.2 Design and Type Tests			
	Tests			6.7 Test Reports			

Document Reference: -		NPS/001/006	Document Type: -	Code of Practice			
Version: -	340	Date of Issue: -	June 2024	Page	65	of	67

B3- Clauses Specific to composite Insulators

	IEC 61466- 1			ENA TS 43– 93			
Clause /	Requirement	Conformance	Clause	Requirement	Conformance	Evidence (test reports)	Remarks
Section		Code			Code		
Clause 6	Marking		4.1	Marking			

EN 601952				ENA TS 43– 93			
Clause /	Requirement	Conformance	Clause	Requirement	Conformance	Evidence (test reports)	Remarks
Section		Code			Code		
11.1	Electrical Tests		6	Test Requirements			
				6.1 General			
10	Design Tests			6.2 Design & Type tests			
11	Type tests (Note 1 & 2)						
12	Sample tests			6.3 sample tests			
13	Routine Tests			6.4 Routine tests			
11.2	Mechanical tests		8	Mechanical tests			
NOTE 1: Fo	or Clause 11.1 of IEC 61952, see also C	lause 6.2 of ENA	TS 43-93.				
NOTE 2: Fo	or Clause 11.2 of IEC 61952, see also C	lause 8 of ENA TS	5 43-93				

Document Reference: -		NPS/001/006	Document Type: -	Code of Practice			
Version: -	340	Date of Issue: -	June 2024	Page	66	of	67

	EN 61109			ENA TS 43– 93			
Clause / Section	Requirement	Conformance Code	Clause	Requirement	Conformance Code	Evidence (test reports)	Remarks
11.1	Electrical Tests		6	Test Requirements 6.1 General			
10	Design Tests			6.2 Design & Type tests			
11	Type tests (Note 1 & 2)						
12	Sample tests			6.3 sample tests			
13	Routine Tests			6.4 Routine tests			
11.2	Damage Limit proof test		8	Mechanical tests			
Annex A	Principles of the damage Limit						

	ENA TS 43-93			
Clause	Requirement	Confor	Evidence (test reports)	Remarks
		mance		
		Code		
6.5	Tracking and Erosion tests			
6.7	Test reports			

Do	Document Reference: -		NPS/001/006	Document Type: -	Code of Practice			
V	ersion: -	340	Date of Issue: -	June 2024	Page	67	of	67

B4- Clauses specific to LV Insulators

	ENA TS 43-93			
Clause	Requirement	Conformance	Evidence (test reports)	Remarks
		Code		
9	LV Line & Service insulators			
	9.1 Standard applications			
	9.1.1 Reel Insulators			
	9.1.2 Coach screw service Insulators			
	9.2 Materials			
	9.2.1 Body Components			
	9.2.2 Metal components			
	9.3 Testing Requirements			
	9.3.1 General			
	9.3.2 Verification of Dimensions			
	9.3.3 Reel Insulators			
	9.3.4 Coachscrew service Insulator			
	9.3.5 Porosity Test for porcelain			
	9.3.5.1 Reel Insulator			
	9.3.5.2 Coachscrew service Insulator			